CHAPTER

Probability Judgment

4.1 Introduction

Though the theory of choice explored in Part 1 is helpful for a range of pur-
poses, most real-life decisions are not choices under certainty. When you
decide whether to start a company, buy stocks, propose to the love of your
life, or have a medical procedure, you will not typically know at the time of
making the decision what the outcome of each available act would be. In order
to capture what people do, and what they should do, in such situations, we
need another theory. Part 2 explores theories of judgment: how people form
and change beliefs. In Part 3, we will return to the topic of decision-making.

In this chapter, we explore the theory of probability. There is wide — but far
from complete — agreement that this is the correct normative theory of proba-
bilistic judgment, that is, that it correctly captures how we should make prob-
abilistic judgments. Consequently, the theory of probability is widely used in
statistics, engineering, finance, public health, and elsewhere. Moreover, the
theory can be used as a descriptive theory about how people make judgments,
and it can be used as part of a theory about how they make decisions.

Like the theory of rational choice under certainty, probability theory is axi-
omatic. Thus, we begin by learning a set of axioms — which will be called
“rules” — and which you will have to take for granted. Most of the time, this
is not hard: once you understand them, the rules may strike you as intuitively
plausible. We will also adopt a series of definitions. Having done that, though,
everything else can be derived. Thus, we will spend a great deal of time below
proving increasingly interesting and powerful principles on the basis of axi-
oms and definitions.

4.2 Fundamentals of probability theory

Here are two classic examples of probability judgment.

Example 4.1 Mrs Jones’s children  You are visiting your new neighbor, Mrs
Jones. Mrs Jones tells you that she has two children, who are playing in their
room. Assume that each time somebody has a child, the probability of having
a girl is the same as the probability of having a boy (and that whether the
mother had a boy or a girl the first time around does not affect the probabili-
ties involved the second time around). Now, Mrs Jones tells you that at least
one of the children is a girl. What is the probability that the other child is a
girl too?
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Example 4.2 The Linda problem Linda is 31 years old, single, outspoken and
very bright. She majored in philosophy. As a student, she was deeply con-
cerned with issues of discrimination and social justice and also participated in
anti-nuclear demonstrations.

(a) What is the probability that Linda is a bank teller?

(b) What is the probability that Linda is a bank teller and a feminist?

Answers to these questions will be given once we have developed the appa-
ratus required to address them rigorously. For now, I will just note that one
reason why this theory is interesting is that people’s intuitive probability
judgments — and therefore many of their decisions - tend to fail in predict-
able ways.

Before we start, we need to develop a conceptual apparatus that will per-
mit us to speak more clearly about the subject matter. For example, we want
to talk about the different things that can conceivably happen. When you flip
a coin, for instance, you can get heads or you can get tails; when you roll a six-
sided die, you can get any number between one and six.

Definition 4.3 Definition of “outcome space” The outcome space is the
set of all possible individual outcomes.

We represent outcome spaces following standard conventions, using curly
brackets and commas. To denote the outcome space associated with flipping
a coin, we write: (Heads, Tails} or {H, T}. To denote the outcome space associ-
ated with rolling a six-sided die, we write: {1, 2, 3,4, 5, 6}.

Oftentimes, we want to talk about what actually happened or about what
may happen. If so, we are talking about actual outcomes, as in “the coin came
up tails” and “I might roll snake eyes (two ones).”

Definition 4.4 Definition of “outcome” An outcome is a subset of the out-
come space.

We write outcomes following the same conventions. Thus, some of the out-
comes associated with one roll of a six-sided die include: {1} for one, {6} for.
six, {1, 2, 3} for a number less than or equal to three, and {2, 4, 6} for an even
number. There is one exception: when the outcome only has one member, we
may omit the curly brackets and write 6 instead of {6}. Notice that in all these
cases, the outcomes are subsets of the outcome space.

Definition 4.5 Definition of “probability” The probability function isa
function Pr(-) that assigns a real number to each outcome. The probability of an
outcome A is the number Pr(A) assigned to A by the probability function Pr( ).

Hence, the probability of rolling an even number when rolling a six-sided die
is denoted Pr({2, 4, 6}). The probability of rolling a six is denoted Pr({6}), ot
relying on the convention introduced above, Pr(6). The probability of getting
heads when flipping a coin is denoted Pr({H}) or Pr(H). The probability o
an outcome, of course, represents (in some sense) the chance of that outcoms
happening. Sometimes people talk about odds instead of probabilities. Odds
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and probabilities are obviously related, but they are not identical. Refer to the
text box on page 83 for more about odds.

The next propositions describe the properties of this probability function.
They will be referred to as the rules or axioms of probability.

Axiom 4.6 The range of probabilities The probability of any outcome A is a
number between 0 and 1 inclusive; that is, 0 < Pr(A) < 1.

Thus, probabilities have to be numbers no smaller than zero and no greater
than one. Equivalently, probabilities can be no lower than 0 percent and no
greater than 100 percent. You might not know the probability that your inter-
net startup company will survive its first year. But you do know this: the prob-
ability is no lower than 0 percent and no greater than 100 percent.

In general, it can be difficult to compute probabilities. People such as engi-
neers and public health officials spend a lot of time trying to determine the
probabilities of events such as nuclear disasters and global pandemics. There
is one case in which computing probabilities is easy, however, and that is in
the case when individual outcomes are equally probable, or equiprobable.

Axiom 4.7 The eauiprosABiLITY rule  If there are n equally probable individual
outcomes {A, A,, ..., A }, then the probability of any one individual outcome A, is
1/n; that is, Pr(A) = 1/n.

Suppose we are asked to compute the probability of getting a four when roll-
ing a fair die. Because all outcomes are equally likely (that is what it means for
the die to be fair) and because there are six outcomes, the probability of getting
afouris 1/6. So Pr(4) = 1/6. Similarly, the probability of getting heads when
flipping a fair coin is 1/2. So Pr(H) = 1/2.

Exercise 4.8 Suppose that you are drawing one card each from two thor-
oughly shuffled but otherwise normal decks of cards. What is the probability
that you draw the same card from the two decks?

You could answer this question by analyzing all 52* = 2704 different outcomes
associated with drawing two cards from two decks. The easiest way to think
about it, though, is to ask what it would take for the second card to match the
first.

Exercise 4.9 The Large Hadron Collider According to some critics, the Large
Hadron Collider has a 50 percent chance of destroying the world. In an inter-
view with the Daily Show’s John Oliver on April 30, 2009, science teacher
Walter Wagner argued: “If you have something that can happen, and some-
thing that won't necessarily happen, it’s going to either happen or it’s going
to not happen, and so the best guess is one in two.” Why is this not a correct
application of the EQUIPROBABILITY rule?

As it happens, we have already developed enough of an apparatus to address
Example 4.1. First, we need to identify the outcome space associated with
having two children. Writing G for “girl” and B for “boy,” and BG for “the
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oldest child is a boy and the youngest child is a girl,” the outcome space is
{GG, GB, BG, BB}. Once you learn that at least one of the children is a girl, you
know for a fact that it is not the case that both children are boys. That is, you
know that BB does not obtain. This means that the outcome space has been
reduced to {GG, GB, BG]}. In only one of three cases (GG) is the other child a
girl also. Because these three outcomes are equally likely, you can apply the
EQUIPROBABILITY rule to find that the probability that the other child is a girl
equals Pr(GG) = 1/3.

Exercise 4.10 Mrs Jones’s children, cont. Instead of telling you that at least
one of the children is a girl, Mrs Jones tells you that her oldest child is a girl.
Now, what is the probability that the other child is also a girl?

Exercise 4.11 Mr Peters’s children Your other neighbor, Mr Peters, has three

children. Having just moved to the neighborhood, you do not know whether

the children are boys or girls. Let us assume that every time Mr Peters had

a child, he was equally likely to have a boy and a girl (and that there are no

other possibilities).

(a) What is the relevant outcome space?

(b) Imagine that you learn that at least one of the children is a girl. What is the
new outcome space?

(c) Given that you know that at least one of the children is a girl, what is the
probability that Mr Peters has three girls?

(d) Imagine that you learn that at least two of the children are girls. What is
the new outcome space?

(e) Given that you know that at least two of the children are girls, what is the
probability that Mr Peters has three girls?

Exercise 4.12 Three-card swindle Your friend Bill is showing you his new
deck of cards. The deck consists of only three cards. The first card is white on
both sides. The second card is red on both sides. The third card is white on one
side and red on the other. Now Bill shuffles the deck well, occasionally turn-
ing individual cards over in the process. Perhaps he puts them all in a hat and
shakes the hat for a long time. Then he puts the stacked deck on the table in
such a way that you can see the visible face of the top card only.
(a) Whatis the outcome space? Write “W/R” to denote the outcome where
the visible side of the top card is white and the other side is red, and so on.
(b) After shuffling, the visible side of the top card is white. What is the new
outcome space?
(c) Given that the visible side of the top card is white, what is the probability
that the other side of the top card is red?

This last exercise is called the “three-card swindle,” because it can be used to
fool people into giving up their money. If you bet ten dollars that the other
side is white, you will find that many people are willing to accept the bet.
This is so because they (mistakenly) believe that the probability is 50 percent.
You might lose. Yet, because you have got the probabilities on your side, on
average you will make money. It is not clear that this game deserves the name
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“swindle” since it involves no deception. Still, because this might be illegal
where you live, you did not hear it from me.

Exercise 4.13" Four-card swindle Your other friend Bull has another deck of

cards. This deck has four cards: one card is white on both sides; one card is

black on both sides; one card is red on both sides; and one card is white on one

side and red on the other. Imagine that you shuffle the deck well, including

turning individual cards upside down every so often.

(@) What is the outcome space? Write “W/R” to denote the outcome where
the visible side of the top card is white and the other side is red, and so on.

(b) Suppose that after shuffling, the visible side of the top card is black. What
is the new outcome space?

(¢) Given that the visible side of the top card is black, what is the probability
that the other side of the card is black as well?

(d) Suppose that after shuffling, the visible side of the top card is red. What is
the new outcome space?

(e) Given that the visible side of the top card is red, what is the probability
that the other side of the card is white?

We end this section with one more exercise.

Exercise 4.14 The Monty Hall Problem You are on a game show. The host
gives you the choice of three doors, all of which are closed. Behind one door
there is a car; behind the others are goats. Here is what will happen. First, you
will point to a door. Next, the host, who knows what is behind each door and
who is doing his best to make sure you do not get the car, will open one of
the other two doors (which will have a goat). Finally, you can choose to open
either one of the remaining two closed doors; that is, you can keep pointing to
the same door, or you can switch. If you do not switch, what is the probability
of finding the car?

4.3 Unconditional probability

The theory should also allow us to compute unknown probabilities on the
basis of known probabilities. In this section we study four rules that do this.

Axiom 4.15 The or rule If two outcomes A and B are mutually exclusive (see
below), then the probability of A Or B equals the probability of A plus the probability
of B; that is, Pr(A v B) = Pr(A) + Pr(B).

Suppose that you want to know the probability of rolling a one or a two
when you roll a fair six-sided die. The or rule tells you that the answer is
Pr(1v2)=Pr(1) +Pr(2)=1/6 +1/6 =1/3. Or suppose that you want to
know the probability of flipping heads or tails when flipping a fair coin. The
same rule tells you that Pr(H v T) = Pr(H) + Px(T) =1/2+1/2=1.

Notice that the rule requires that the two outcomes be mutually exclu-
sive. What does this mean? Two outcomes A and B are mutually exclusive
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just in case at most one of them can happen. In the previous two examples,
this condition holds. When flipping a coin, H and T are mutually exclusive
since at most one of them can occur every time you flip a coin. No coin can
land heads and tails at the same time. Similarly, when you roll one die, one
and two are mutually exclusive, since at most one of them can occur. Notice
that the latter two outcomes are mutually exclusive even though neither one
may occur.

Exercise 4.16 Mutual exclusivity Which pairs of outcomes are mutually
exclusive? More than one answer may be correct.

(a) Itis your birthday; you have a test.

(b) Tt rains; night falls.

(¢) You get Bs in all of your classes; you get a 4.0 GPA.

(d) Your new computer is a Mac; your new computer is a PC.

(e) You are a remarkable student; you get a good job after graduation.

Exercise 4.17 What is the probability of drawing an ace when drawing
one card from a regular (well-shuffled) deck of cards? If you intend to apply
the oR rule, do not forget to check that the relevant outcomes are mutually
exclusive.

The importance of checking whether two outcomes are mutually exclusive
is best emphasized by giving an example. What is the probability of rolling
a fair die and getting a number that is either strictly less than six or strictly
greater than one? It is quite obvious that you could not fail to roll a number
strictly less than six or strictly greater than one, so the probability must be
100 percent. If you tried to take the probability that you roll a number strictly
less than six plus the probability that you roll a number strictly greater than
one, you would end up with a number greater than one, which would be a
violation of Axiom 4.6. So there is good reason for the Or rule to require that
outcomes be mutually exclusive.

The answer to the question in the previous paragraph follows from the
following straightforward rule:

Axiom 4.18 The evervHinG rule  The probability of the entire outcome space
is equal to oné. ; )

So, Pr({1, 2, 3, 4,5, 6}) = 1 by the EVERYTHING rule. We could also have com-
puted this number by using the or rule, because Pr({1,2,3,4,5,6}) =Pr(lor |
2 0R 3 OR4 OR 5 OR 6) = Pr(1) + Pr(2) + Pr(3) + Pr(4) + Pr(5) + Pr(6) = 1/6 |
* 6 = 1. The or rule (Axiom 4.15) applies because the six individual outcomes
are mutually exclusive; the EQUIPROBABILITY rule (Axiom 4.7) applies because
all outcomes are equally probable. What the EVERYTHING rule tells us that we
did not already know is that the probability of the entire outcome space equals

one whether or not the outcomes are equiprobable. The next rule is easy too. |

Axiom 4.19 The ot rule The probability that some outcome A will not occur
is equal to one minus the probability that it does. That is, Pr(~A) =1 — Pr(A).
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Forexample, suppose that you want to know the probability of rolling anything
but a six when rolling a six-sided die. By the NoT rule, the probability that we
roll anything but a six can be computed as Pr(—=6) =1 —Pr(6) =1 —1/6 = 5/6.
Given that the outcomes are mutually exclusive, we could have computed this
using the oRr rule too. (How?) In general, it is good to check that you get the
same number when solving the same problem in different ways. If you do not,
there is something wrong with your calculations.

Axiom 4.20 The anp rule  If two outcomes A and B are independent (see below),
then the probability of A AND B equals the probability of A multiplied by the prob-
ability of B; that is, Pr(A & B) = Pr(A) * Pr(B).

Suppose you flip a fair coin twice. What is the probability of getting two
heads? Writing H, for heads on the first coin, and so on, by the AnD rule,
Pr(H &H,) = Pr(H,) = Pr(H,) = 1/2 * 1/2 = 1/4. You could also solve this
problem by looking at the outcome space {H H,, H,T,, T H,, T,T,} and using
the EQUIPROBABILITY rule. Similarly, it is easy to compute the probability of
getting two sixes when rolling a fair die twice: Pr(6,&6,) = Pr(6,) * Pr(6,) =
1/6%1/6 = 1/36.

Exercise 4.21 Are you more likely to get two sixes when rolling one fair die
twice or when simultaneously rolling two fair dice?

Notice that the AND rule requires that the two outcomes be independent.
What does this mean? Two outcomes A and B are independent just in case
the fact that one occurs does not affect the probability that the other one does.
This condition is satisfied when talking about a coin flipped twice. H, and H,
are independent since the coin has no memory: whether or not the coin lands
heads or tails the first time you flip it will not affect the probability of getting
heads (or tails) the second time.

Exercise 4.22 Independence What pairs of outcomes are independent?

More than one answer may be correct.

(a) You sleep late; you are late for class.

(b) You are a remarkable student; you get a good job after graduation.

(¢) You write proper thank-yownotes; you get invited-back-

(d) The first time you flip a silver dollar you get heads; the second time you
flip a silver dollar you get tails. .

(e) General Electric stock goes up; General Motors stock goes up.

Exercise 4.23 Luck in love According to a well-known saying: “Lucky in
cards, unlucky in love.” Is this to say that luck in cards and luck in love are

- independent or not independent?

The importance of checking whether two outcomes are independent is best
emphasized by giving an example. What is the probability of simultaneously
getting a two and a three when you roll a fair die once? The answer is not
1/6 #1/6 = 1/36, of course, but zero. The outcomes are not independent, so
you cannot use the AND rule. This example also tells you is that when two
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outcomes are mutually exclusive they are not independent. (We will return to
the topic of independence in Section 5.2.)

" Exercise 4.24 When rolling two fair dice, what is the probability that the

number of dots add up to 11? If you intend to use the oR rule, make sure the
relevant outcomes are mutually exclusive. If you intend to use the AND rule,
make sure the relevant outcomes are independent.

Exercise 4.25 Suppose you draw two cards from a well-shuffled deck of

cards with replacement, meaning that you put the first card back into the deck

(and shuffle the deck once more) before drawing the second card.

(a) What is the probability that you draw the ace of spades twice?

(b) What is the probability that you draw two aces? (Here, you can use your
answer to Exercise 4.17.)

We are now in a position to address Example 4.2. Obviously, the theory of
probability by itself will not tell you the probability that Linda is a bank teller.
But it can tell you something else. Let F mean that Linda is a feminist and B
that Linda is a bank teller. Then the probability that she is both a feminist and
a bank teller is Pr(B&F) = Pr(B) * Pr(F). (In order to apply the AND rule here, I
am assuming that the outcomes are independent; the general result, however,
holds even if they are not.) Because Pr(F) = 1 by Axiom 4.6, we know that
Pr(B) * Pr(F) < Pr(B). For, if you multiply a positive number x with a fraction
(between zero and one) you will end up with something less than x. So what-
ever the relevant probabilities involved are, it must be the case that Pr(B&F) =
Pr(B); that is, the probability that Linda is a bank teller and a feminist has tobe
smaller than or equal to the probability that she is a bank teller. Many people
will tell you that Linda is more likely to be a bank teller and a feminist than
she is to be a bank teller. This mistake is referred to as the conjunction fallacy,
about which you will hear more in Section 5.3.

We end this section with one more exercise.

Exercise 4.26 For the following questions, assume that you are rolling two
fair dice:

(a) What is the probability of getting fwo sixes?

(b) What is the probability of getting 1o sixes?

(c) What is the probability of getting exactly one six?

(d) What is the probability of getting at least one six?

To compute the answer to (), note that there are two ways to roll exactly one
six. When answering (d), note that there are at least two ways to compute the
answer. You can recognize that rolling at least one six is the same as rolling two
sixes or rolling exactly one six and add up the answers to (a) and (c). Or you can
recognize that rolling at least one six is the same as not rolling no sixes and com-
pute the answer using the NoT rule.

Exercise 4.27 In computing the answer to Exercise 4.26(d), you may have
been tempted to add the probability of rolling a six on the one die (1/6) to the
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GETICERE The two dice

probability of rolling a six on the other die (1/6) to get the answer 2/6 = 1/3.
That, however, would be a mistake. Why?

Odds

Sometimes probabilities are expressed in terms of odds rather than prob-
abilities: Imagine that you have an-utn containing 2 black and 3 white
balls, so that the probability of drawing a black ball is 2/5. One way to
get this figure is to divide the number of favorable outcomes (outcomes
in which the event of interest obtains) by the total number of outcomes.
By contrast, you get the odds of drawing a black ball by dividing the
number of favorable outcomes by the number of unfavorable outcomes,
so that the odds of drawing a black ball are 2 to 3 or 2:3. Under the same
assumptions, the odds of drawing a white ball are 3:2. If there is an equal
number of black and white balls in the urn, the odds are 1 to 1 or 1:1.
Such odds are also-said to be even. When people talk about a 50-50
chance, they are obviously talking about even odds, since 50/50 = 1.
How do odds relate to probabilities? If you have the probability p and
want the odds o, you apply the following formula:

P

0= I—:‘?
When p equals 2/5, it is easy to confirm that o equals 2/5 divided by 3/5
which is 2/3 or 2:3. If the probability is 1/2, the odds are 1/2 divided by
1/2 which is 1'or 1:1. If you have the odds ¢ and want the probability p,
you apply the inverse formula:

0
P0+1

When o equals 2:3, you can quickly confirm that p equals 2/3 divided
by 5/3 which is 2/5. If the odds are even, the probability is 1 divided
by 1+1, which is 1/2. The use of odds instead of probabilities can come
across as old-fashioned. But there are areas — for example, some games
of chance and some areas of statistics —where odds are consistently used.
Itis good to know how to interpret them:.
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If the answers to Exercise 4.26 are not completely obvious already, refer to
Figure 4.1. Here, the numbers to the left represent what might happen when
you roll the first die and the numbers on top represent what might happen
when you roll the second die. Thus, the table has 6 * 6 = 36 cells representing
all the possible outcomes of rolling two dice. The dark gray area represents the
possibility that both dice are sixes; because there is only one way to roll two
sixes, this area contains but one cell and the answer to (a) is 1/36. The white
area represents the possibility that both dice are non-sixes; because there are 5
* 5 ways to roll two non-sixes, this area contains 25 cells and the answer to (b)
is 25/36. The light gray areas represent the possibility that one die is a six and
the other one is a non-six; because there are 5 + 5 ways to attain this outcome,
these areas contain ten cells and the answer to (c) is 10/36. You can compute
the answer to (d) by counting the 5 + 5 + 1 = 11 cells in the two light gray
and the one dark gray areas and get an answer of 11/36. But a smarter way is
to realize that the gray areas cover everything that is not white, which allows
you to get the answer by computing 1 — 25/36 = 11/36. Why this is smarter
will be clear in Section 5.3. The figure also illustrates why you cannot compute
the probability of getting at least one six by adding the probability of rolling a
six on the first die to the probability of rolling a six on the second one. If you
were to do that, you would add the number of cells in the bottom row to the
number of cells in the right-most column — thereby double-counting the cell
on the bottom-right.

4.4 GConditional probability

In Exercise 4.25, you computed the probability of drawing two aces when
drawing two cards with replacement. Suppose, instead, that you draw two
aces without replacement, meaning that you put the first card aside after looking
at it. What is the probability of drawing two aces without replacement? You
know you cannot use Axiom 4.20, since the two outcomes we are interested
in (drawing an ace the first time and drawing an ace the second time) are not
independent. You can, however, approach the problem in the following way.
First, you can ask what the probability is that the first card is an ace. Because
there are 52 tards in the deck, and 4 of those are aces, you know that this prob-
ability is 4/52. Second, you can ask what the probability is that the second
card is an ace, given that the first card was an ace. Because there are 51 cards left
in the deck, and only 3 of them are aces, this probability is 3/51. Now you can
multiply these numbers and get:

4.,3_12 1
52 51 2652 221°

This procedure can be used to calculate the probability of winning certain
types of lotteries. According to the Consumer Federation of America, about
one in five Americans believe that “the most practical way for them to accu-
mulate several hundred thousand dollars is to win the lottery.” The poor, least
educated, and oldest are particularly likely to think of the lottery as a smart
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way to get rich. So it might be useful to ask just how likely or unlikely it is to
win common lotteries.

Exercise 4.28 Lotto 6/49 Many states and countries operate lotteries in
which the customer picks n of m numbers, in any order, where 7 is consider-
ably smaller than m. In one version of this lottery, which I will call Lotto 6/49,
players circle 6 numbers out of 49 using a ticket like that in Figure 4.2. The
order in which numbers are circled does not matter. You win the grand prize
if all 6 are correct. What is the probability that you win the Lotto 6/49 any one
time you play? Notice that this is similar to picking six consecutive aces out of
a deck with 49 cards, if 6 of those cards are aces.

The fact that the probability of winning the lottery is low does not imply that
it is necessarily irrational to buy these tickets. (We will return to this topic in
Part 3.) Nevertheless, it may be fun to ask some questions about these lotteries.

Problem 4.29 Lotto 6/49, cont. What does the probability of winning the
Lotto 6/49 tell you about the wisdom of buying Lotto tickets? What does it tell you
about people who buy these tickets?

Exercise 4.30 Lotto 6/49, cont. Use the idea of anchoring and adjustment
from Section 3.6 to explain why people believe that they have a good chance
of winning these lotteries.

Considerations like these clarify why state lottery schemes are sometimes
described as a tax on innumeracy.

The probability that something happens given that some other thing hap-
pens is called a conditional probability. We write the probability that A given
C, or the probability of A conditional on C, as follows: Pr(A|C). Conditional
probabilities are useful for a variety of purposes. It may be easier to compute
conditional probabilities than unconditional probabilities. Knowing the con-
ditional probabilities is oftentimes quite enough to solve the problem at hand.

Notice right away that Pr(A|C) is not the same thing as Pr(C|A). Though
these two probabilities may be identical, they need not be. Suppose, for exam-
ple, that S means that Joe is a smoker, while H means that Joe is human. If so,

LOTTO 6/49

1 2 3 4 5 6 7

8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49

m Lotto 6/49 ticket
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Pr(S|H) is the probability that Joe is a smoker given that Joe is human, which
is a number somewhere between zero and one. Meanwhile, Pr(H|S) is the
probability that Joe is human given that Joe is a smoker, which is one (or at
Jeast close to one). Joe may not be a human being for quite as long if heis a
smoker, but that is another matter.

Exercise 4.31 Conditional Probabilities Suppose that H means “The patient

has a headache” and T means “The patient has a brain tumor.”

(a) How do you interpret the two conditional probabilities Pr(H |T) and
Pr(T|H)?

(b) Are the two numbers more or less the same?

It should be clear that the two conditional probabilities in general are differ-
ent, and that it is important for both doctors and patients to keep them apart.
(We will return to this topic in sections 5.4 and 5.6.)

Suppose that you draw one card from a well-shuffled deck, and that you
are interested in the probability of drawing the ace of spades given that you
draw an ace. Given that you just drew an ace, there are four possibilities: the
ace of spades, ace of clubs, ace of hearts, or ace of diamonds. Because only
one of the four is the ace of spades, and because all four outcomes are equally
likely, this probability is 1/4. You can get the same answer by dividing the
probability that you draw the ace of spades by the probability that you draw
an ace: 1/52 divided by 4/52, which is 1 /4. This is no coincidence, as the for-
mal definition of conditional probability will show.

Definition 4.32 Conditional probability If A and B are two outcomes,
Pr(A|B) = Pr(A&B)/ Pr(B).

As another example of conditional probability, recall the problem with the two
aces. Let A denote “the second card is an ace” and let B denote “the first card
is an ace.” We know that the probability of drawing two aces without replace-
ment is 1/221. This is Pr(A & B). We also know that the probability that the first
card is an ace is 1/13. This is Pr(B). So by definition:

_ Pr(A&B) 1/21 _ 3
. Pr(AIB)= 5 5 T a3 51

But we knew this: 3/51 is the probability that the second card is an ace given
that the first card was: Pr(A & B). So the formula works.

Exercise 4.33 Ace of spades Use Definition 4.32 to compute the probability
that you draw an ace of spades conditional on having drawn an ace when you
draw one card from a well-shuffled deck. You can imagine a game show host
who draws a card at random and announces that the card is an ace, and a con-
testant who has to guess what kind of ace it is. Given what you know about
that card, what is the probability that it is the ace of spades?

Because you cannot divide numbers by zero, things get tricky when some
probabilities are zero; here, I will ignore these complications.
One implication of the definition is particularly useful:
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Proposition 4.34 The general anp rule Pr(A & B) = Pr(A|B) * Pr(B).

Proof. Starting off with Definition 4.32, multiply each side of the
equation by Pr(B). O

According to this proposition, the probability of drawing two aces equals the
probability of drawing an ace the first time multiplied by the probability of
drawing an ace the second time given that you drew an ace the first time. But
again, we knew this. In fact, we implicitly relied on this rule when computing
the answers to the first exercises in this section. Notice that this rule allows us
to compute the probability of A AND B without requiring that the outcomes be
independent. This is why it is called the general AND rule.

Exercise 4.35 The general anp rule Use the general anD rule to compute

the probability that you will draw the ace of spades twice when drawing two
cards from a deck without replacement.

The general AND rule permits us to establish the following result.

Proposition 4.36 Pr(A|B) * Pr(B) = Pr(B|A) = Pr(A).

Proof. By Proposition 4.34, Pr(A&B) = Pr(A|B) * Pr(B) but also
Pr(B&A) = Pr(B|A) * Pr(A). Because by logic Pr(A&B) = Pr(B&A), it
must be the case that Pr(A|B) # Pr(B) = Pr(B|A) * Pr(A). O

Suppose that you draw one card from a well-shuffled deck, and that A means
that you draw an ace and that ¢ means that you draw a diamond. If so, it fol-
lows that Pr(A| ¢) * Pr(¢) = Pr(e |A) # Pr(A). You can check that this is true
by plugging in the numbers: 1/13 * 13/52 = 1/4 % 4/52=1/4.

This notion of conditional probability allows us to sharpen our definition
of independence. We said that two outcomes A and B are independent if the
probability of A does not depend on whether B occurred. Another way of say-
ing this is to say that Pr(A|B) = Pr(A). In fact, there are several ways of saying
the same thing.

Proposition 4.37 Independence conditions The following three claims are
equivalent:

(i) Pr(A|B) = Pr(A)
(ii) Pr(B|A) = Pr(B)
(i) Pr(A&B) = Pr(A) * Pr(B)

Proof. See Exercise 4.38. (]

Exercise 4.38 Independence conditions Prove that the three parts of
Proposition 4.37 are equivalent. The most convenient way of doing so is to
prove (a) that (i) implies (ii), (b) that (ii) implies (iii), and (c) that (iii) implies (i).
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Notice that part (iii) is familiar: it is the principle that we know as the AND
rule (Axiom 4.20). Thus, the original AND rule follows logically from the
general AND rule and the assumption that the two outcomes in question are
independent. This is pretty neat.

4.5 Total probability and Bayes’s rule

Conditional probabilities can also be used to compute unconditional prob-
abilities. Suppose that you are running a frisbee factory and that you want
to know the probability that one of your frisbees is defective. You have two
machines producing frisbees: a new one (B) producing 800 frisbees per day
and an old one (~B) producing 200 frisbees per day. Thus, the probability
that a randomly selected frisbee from your factory was produced by machine
B is Pr(B) = 800/(800 + 200) = 0.8; the probability that it was produced
by machine -B is Pr(-B) =1 — Pr(B) = 0.2. Among the frisbees produced by
the new machine, one percent are defective (D); among those produced by
the old one, two percent are. The probability that a randomly selected frisbee
produced by machine B is defective is Pr(D |B) = 0.01; the probability that a
randomly selected frisbee produced by machine -B is defective is Pr(D|-B)
= 0.02. It may be useful to draw a tree illustrating the four possibilities (see
Figure 4.3).

What is the probability that a randomly selected frisbee from your fac-
tory is defective? There are two ways in which a defective frisbee can be pro-
duced: by machine B and by machine —B. So the probability that a frisbee is
defective Pr(D) equals the following probability: that the frisbee is produced
by machine B and turns out to be defective or that the frisbee is produced
by machine =B and turns out to be defective; that is, Pr([D&B] v [D&—B]).
These outcomes are obviously mutually exclusive, so the probability equals
Pr(D&B) + Pr(D&-B). Applying the general AND rule twice, this equals
Pr(D|B) * Pr(B) + Pr(D|-B) * Pr(~B). But we have all these numbers, so:

Pr(D) = Pr(D|B) # Pr(B)+ Pr(D|=B)* Pr(~B) =0.01% 0.8 +0.02% 02 =0.012.

N - -

Pr(D|B)

-D

Pr(-D|-B)

PETEXEY The frisbee factory




ht we know as the AND
ows logically from the
utcomes in question are

ule

;ute unconditional prob-
ctory and that you want
| defective. You have two
ring 800 frisbees per day
ay. Thus, the probability
yas produced by machine
ity that it was produced
r the frisbees produced by
mong those produced by
randomly selected frisbee
).01; the probability that a
B is defective is Pr(D|-B)
s the four possibilities (see

ted frisbee from your fac-
efective frisbee can be pro-
probability that a frisbee is
hat the frisbee is produced
\at the frisbee is produced
is, Pr({D&B]V [D&-BJ).
e, so the probability equals
wp rule twice, this equals
e all these numbers, so:

101 0.8 +0.02%0.2= 0.012.

)

~—
By~ 0

=

=

Chapter 4 Probability Judgment

The probability that a randomly selected frisbee produced by your fac-
tory is defective is 1.2 percent. These calculations illustrate the rule of total
probability. .

Proposition 4.39 The rule of total probability
Pr(D) = Pr(D|B) # Pr(B) + Pr(D|~B) * Pr(-B).

Proof. By logic, D is the same as [D &B] v [D&-B]. So Pr(D) =
Pr([D & B] v [D & B]). Because the two outcomes are mutually exclu-
sive, this equals Pr(D &B) + Pr(D &~ B) by the or rule (Axiom 4.15).
Applying the general AND rule (Proposition 4.34) twice, we get Pr(D)
= Pr(D|B) # Pr(B) + Pr(D|-B) * Pr(=B). O

Exercise 4.40 Cancer Use the rule of total probability to solve the following
problem. You are a physician meeting with a patient who has just been diag-
nosed with cancer. You know there are two mutually exclusive types of cancer
that the patient could have: type A and type B. The probability that he or she
has A is 1/3 and the probability that he or she has B is 2/3. Type A is deadly:
four patients out of five diagnosed with type A cancer die (D) within one year.
Type B is less dangerous: only one patient out of five diagnosed with type B
cancer dies (D) within one year.

(a) Draw a tree representing the four possible outcomes.

(b) Compute the probability that your patient dies within a year.

Exercise 4.41 Scuba diving certification You are scheduled to sit the test
required to be a certified scuba diver and very much hope you will pass (P).
The test can be easy (E) or not. The probability that it is easy is 60 percent. If it
is easy, you estimate that the probability of passing is 90 percent; if it is hard,
you estimate that the probability is 50 percent. What is the probability that
you pass (P)?

There is another type of question that you may ask as well. Suppose you pick
up one of the frisbees produced in your factory and find that it is defective.
What is the probability that the defective frisbee was produced by the new
machine? Here you are asking for the probability that a frisbee was B condi-
tional on D, that is, Pr(B| D). .

We know that there are two ways in which a defective frisbee can be
produced. Either it comes from the new machine, which is to say that
D&B, or it comes from the old machine, which is to say that D &-B. We
also know the probabilities that these states will obtain for any given fris-
bee (not necessarily defective): Pr(D&B) = Pr(D|B) * Pr(B) = 0.01 * 0.8 =
0.008 and Pr(D &~ B) = Pr(D|-B) * Pr(-B) = 0.02 * 0.2 = 0.004. We want
the probability that a frisbee comes from the new machine given that it is
defective, that is, Pr(B|D). By looking at the figures, you can tell that the
first probability is twice as large as the second one. What this means is that
in two cases out of three, a defective frisbee comes from the new machine.
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Formally, Pr (D|B) = 0.008/0.012 = 2/3. This may be surprising, in light of
the fact that the new machine has a lower rate of defective frisbees than the
old one. But it is explained by the fact that the new machine also produces
far more frisbees than the old one.

The calculations you have just performed are an illustration of Bayes’s
rule, or Bayes’s theorem, which looks more complicated than it is.

Proposition 4.42 Bayes’s rule
Pr(D|B) # Pr(B)
Pr(D)
B Pr(D|B) #Pr(B)
"~ Pr(D|B) #Pr(B) + Pr(D|-B) *Pr(=B) ’

Pr(B|D) =

Proof. The rule has two forms. The first form can be obtained from
Proposition 4.36 by dividing both sides of the equation by Pr(D). The
second form can be obtained from the first by applying the rule of
total probability (Proposition 4.39) to the denominator.

Exercise 4.43 Cancer, cont. Suppose that your patient from Exercise 4.40
dies in less than one year, before you learn whether he or she has type A or
type B cancer. Given that the patient died in less than a year, what is the prob-
ability he or she had type A cancer?

Exercise 4.44 Scuba diving certification, cont. You passed the scuba diving
test! Your friend says: “Not to rain on your parade, but you obviously got the
easy test.” Given that you passed, what is the probability that you got the
easy test?

Bayes's rule is an extraordinarily powerful principle. To show how useful it
can be, consider the following problem. If it is not immediately obvious how
to attack this problem, it is almost always useful to draw a tree identifying the
probabilities.

Exercise 4.45 The dating game You are considering asking L out for a date,

but you are a little worried that L may already have started dating somebody

else. The probability that L is dating somebody else, you would say, is 1/4. I

L is dating somebody else, he/she is unlikely to accept your offer to go on a

date: in fact, you think the probability is only 1/6. If L is not dating somebody

else, though, you think the probability is much better: about 2/3.

(a) What is the probability that L is dating somebody else but will accept your
offer to go on a date anyway?

(b) What is the probability that L is not dating somebody else and will accept
your offer to go on a date?

(c) What is the probability that L will accept your offer to go on a date?

(d) Suppose L accepts your offer to go on a date. What is the probability that
L is dating somebody else, given that L agreed to go on a date?
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There are more exercises on Bayes’s rule in sections 4.6 and 5.4. See also
Exercise 5.34 on page 113.

4.6 Bayesian updating

Bayes’s rule is often interpreted as describing how we should update our
beliefs in light of new evidence. We update beliefs in light of new evidence
all the time. In everyday life, we update our belief that a particular presiden-
tial candidate will win the election in light of evidence about how well he
or she is doing. The evidence here may include poll results, our judgments
about his or her performance in presidential debates, and so on. In science,
we update our assessment about the plausibility of a hypothesis or theory in
light of evidence, which may come from experiments, field studies, or other
sources. Consider, for example, how a person’s innocent belief that the Earth
is flat might be updated in light of the fact that there are horizons, the fact
that the Earth casts a circular shadow onto the Moon during a lunar eclipse,
and the fact that one can travel around the world. Philosophers of science talk
about the confirmation of scientific theories, so the theory of how this is done
is called confirmation theory. Bayes’s rule plays a critical role in confirmation
theory.

To see how this works, think of the problem of belief updating as follows:
whatis at stake is whether a given hypothesis is true or false. If the hypothesis
is true, there is some probability that the evidence obtains. If the hypothesis is
false, there is some other probability that the evidence obtains. The question is
how you should change your belief - that is, the probability that you assign to
the possibility that the hypothesis is true ~ in light of the fact that the evidence
obtains. Figure 4.4 helps to bring out the structure of the problem.

Let H stand for the hypothesis and E for the evidence. The probability of H,
Pr(H), is called the prior probability: it is the probability that H is true before
you learn whether E is true. The probability of H given E, Pr(H|E), is called
the posterior probability: it is the probability that H obtains given that the
evidence E is true. The question is what the posterior probability should be.

N R )

Pr(E|H) £

Pr(-E|—|H) -E

Figure 4.4‘ Bayesian updating
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This question is answered by a simple application of Bayes’s rule. Substituting
H for B and E for D in Proposition 4.42, we can write Bayes’s rule as follows:

Pr(HIE)= Pr(E|H) *Pr(H)
r(HIE)= 5 EIH) # Pr(H) + Pr(E|=H) * Pr(~H)

The result tells you how to update your belief in the hypothesis H in light
of the evidence E. Specifically, Bayes’s rule tells you that the probability you
assign to H being true should go from Pr(H) to Pr(H|E). If you change your
beliefs in accordance with Bayes’s rule, we say that you engage in Bayesian
updating.

Suppose that John and Wes are arguing about whether a coin brought to
class by a student has two heads or whether it is fair. Imagine that there are no
other possibilities. For whatever reason, the student will not let them inspect
the coin, but she will allow them to observe the outcome of coin flips. Let H be
the hypothesis that the coin has two heads, so that ~H means that the coin is
fair. Let us consider John first. He thinks the coin is unlikely to have two heads:
his prior probability, Pr(H), is only 0.01. Now suppose the student flips the
coin, and that it comes up heads. Let E mean “The coin comes up heads.” The
problem is this: What probability should John assign to H given that E is true?

Given Bayes’s rule, computing John’s posterior probability Pr(H |E) is
straightforward. We are given Pr(H) = 0.01, and therefore know that Pr(=H)
=1 — Pr(H) = 0.99. From the description of the problem, we also know the
conditional probabilities: Pr(E |H) = 1 and Pr(E |~H) = 0.5. All that remains is
to plug the numbers into the theorem, as follows:

Pr(E|H) *Pr(H)
Pr(E|H) * Pr(H) + Pr(E|~H) *Pr(=H)

Pr(HE) =

1%0.01
=—————— =~ 002
1+0.01+0.5%0.99 2

The fact that John's posterior probability Pr(H|E) differs from his prior prob-
ability Pr(H) means that he updated his belief in light of the evidence. The
observation of heads increased his probability that the coin has two heads, as
it should. Notice how the posterior probability reflects both the prior prob-
ability and the evidence E.

Now, if John gets access to ever more evidence about the coin, there is no
reason why he should not update his belief again. Suppose that the student
flips the coin a second time and gets heads again. We can figure out what
John's probability should be after observing this second flip by simply treat-
ing his old posterior probability as the new prior probability and applying
Bayes’s rule once more:

1%0.02

Pr(HIE) = 15002 £ 057008 ~ O0%

Notice that his posterior probability increases even more after he learns that
the coin came up heads the second time.
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Exercise 4.46 Bayesian updating Suppose Wes, before the student starts
flipping the coin, assigns a probability of 50 percent to the hypothesis that it
has two heads.

(a) What is his posterior probability after the first trial?

(b) After the second?

Figure 4.5 illustrates how John’s and Wes’s posterior probabilities develop
as the evidence comes in. Notice that over time both increase the probability
assigned to the hypothesis. Notice, also, that their respective probabilities get
closer and closer. As a result, over time (after some 15-20 trials) they are in vir-
tual agreement that the probability of the coin having two heads is almost 100

percent. We will return to questions of rational updating in the next chapter.
Until then, one last exercise.

Exercise 4.47 Bayesian updating, cont. Suppose that, on the third trial, instead
of flipping heads, the student flips tails. What would John’s and Wes’s posterior
probability be? To solve this problem, let E mean “The coin comes up tails.”

4.7 Discussion

In this chapter we have explored the theory of probability. The theory has
something of the feel of magic to it. When you are facing these difficult prob-
lems where untutored intuitions are conflicting or wide off the mark, all you
have to do is to apply the incantations (rules) in the right way and in the right

" order and the answer pops right up! Anyway, probability theory is critical to

a wide range of applications, among other things as the foundations of sta-
tistical inference. It is relevant here because it can be interpreted as a theory
of judgment, that is, as a theory of how to revise beliefs in light of evidence.
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The section on Bayesian updating (Section 4.6) shows how the argument goes.
As long as you are committed to the axioms and rules of the probability cal-
culus, we established that you will (as a matter of mathematical necessity)
update your probabilities consistently with Bayes’s rule. Notice how neat
this is. While the theory says nothing about what your prior probabilities are
or should be, it does tell you exactly what your posterior probability will or
should be after observing the evidence.

How plausible is this theory? Again, we must separate the descriptive
question from the normative question. Do people in fact update their beliefs
in accordance with Bayes’s rule? Should they? The axioms might seem weak
and uncontroversial, both from a descriptive and from a normative standpoint.
Yet the resulting theory is anything but weak. As in the case of the theory of
choice under certainty, we have built a remarkably powerful theory on the
basis of a fairly modest number of seemingly weak axioms. It is important to
keep in mind that the theory is not as demanding as some people allege. It is
not intended to describe the actual cognitive processes you go through when
updating your beliefs: the theory does not say that you must apply Bayes's the-
orem in your head. But it does specify exactly how your posterior probability
relates to your prior, given various conditional and unconditional probabilities.

In the next chapter, we will see how the theory fares when confronted with
evidence.

ADDITIONAL EXERCISES

ise 4.48 SA test When you take the SAT test, you may think
 that the correct answers to the various questions would be completely
’ ra:ndom In fact, they are not. The authors of the test want the answers to
seem random, and therefore they make sure that not all correct answers
“are, ’rsay, (d),:iCdnSider the following three outcomes. A: The correct
“answer to queStion 12 is (d). B: The correct answer to question 13 is (d).
C: Theiscorrect[answer to question 14 is (d). Are outcomes A, B,and C
- mutually exclusive, independent, both, or neither?

4.49 Nir Langford Multiple lawsuits allege that area gam-
~ bling estgblishments, on multiple occasions, doctored equipment so as
to give Birmingham mayor Larry Langford tens of thousands of dol-
“lars in winnings: Langford, already in prison for scores of corruption-
related charges, has not denied winning the money; he does deny that
the machines were doctored.
- We do not know exactly what the probability of winning the jackpot
nachine that has not been doctored might be, but we can make
telligent guesses. Suppose that Langford on three occasions bet
won $25 For each jackpot, in order to break even, a gam-
' bling establishme ceds 24,999 people who bet $1 and do not win. So
we might infer that the probability of winning when betting a dollar is
‘somewhere in the neighborhood of 1/25,000. If the establishment wants
- to make a profit, which it does, the probability would have to be even
lower, but let us ignore this fact.
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[ ADDITIONAL EXERCISES cont.

- What is the probab111ty that Langford would win the jackpot three
times in a row when playmg three t'rmes on undoctored machines?

Note that the probabﬂlty that Langford would win three times in a row
given that the machines were not doctored is different from the con-

ditional ‘probability that the machines were not doctored given that
Langford won three timesina row.”

Exercise 4.50 Economists go toVegas = According to professional lore,
economists are not welcome to organize large meetings in Las Vegas.
The reason is-a sort of sin of omission: What is it economists, unlike most
normal people, allegedly do not do when in Vegas?

Exercise 4.51 Gender discrimination Imagme that an editorial board

of 20 members is all male. - -

(a) What is the probabﬂ1ty that t]:us would happen by chance alone
assuming that the board members are drawn from a pool of 1/2 men
and 1/2 women? ,

(b) Pethaps the ‘pool: of quahfled 1nd1v1duals is not entire balanced in
terms of gender. What is. the answer if the pool ¢onsists of 2/3 men
and 1/3 women? :

() And what 1f it 1s 4 / 5 men and 5 Women7

Exercise 4.52 Softball Asoftball player s battmg average is defined
as the ratio of hits to at bats. Suppose that a player has a 0.250 batting
average and is very consistent, so that the probability of a hit is the
same every time she is at bat. During today’s game, this player will
be at bat exactly three times.

(a) What is the probability that she ends up with three hits?

(b) Whati is the probability that she ends up with no hits?

() What is the probability that she ends up with exactly one hit?

(d) What s the probability that she ends up with at least one hit?

Exercise 4.53 Gov. Schwarzenegger After Vetomg a bill from the Cali-
fornia State Assembly in 2009, California Governor Arnold Schwarzenegger
published a letter (see Figure 4. 6). People immediately noticed that the
first letter on each line together spelled outa vulgarity. When confronted
with this fact, a spokesperson said: “Itwas just a weird coincidence.”

(a) Assuming that a letter has eight lines; and that each of the 26 letters
in the alphabet is ‘equally likely to appear at the beginning of each
line, what is the probablhty that thls exact message would appear by
chance? :

(b) Tt is true that the Govemor writes many Ietters each year, which
means that the probab111ty of any one letter spelling out this vulgar-
ity is higher than your answer to (a) would suggest. Suppose that the
Governor writes 100 eight-line letters each year. What is the prob-
ability that at least one of them will spell out the vulgarity?
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‘ | ADDITIONAL E_XERC.SES cont.

To the Members of the california State Assembly:

I am returning Assembly Bill 1176 without
[my s . . 2]

| For some time now I have lamented the fact tha . . .
.| unnecessary bills come to me for consideration . . .
| care are major issues my Administration has br . . .
kicks the can down the alley.

| vet another legislative year has come and gone . . .
overwhelmingly deserve. In light of this, and . . .
unnecessary to sign this measure at this time.

Sincerely,

Arnold Schwarzenegger

| Figdre 4.6 Governot: Schwarzenegger’s letter i

Exercise 4.54 Max's bad day Max is about to take a multiple-choice

test. The test has ten questions, and each has two possible answers:

”tru“e\”,and 4 false.” Max does not have the faintest idea of what the right

answer to any of the questions might be. He decides to pick answers

U e R

(a) What is the probability that Max will get all ten questions right?

-(b) What is the probability that Max will get the first question wrong

" and the other questions right?

‘() What is the probability that Max will get the second question wrong

- and the other questions right?

(d) What is the probability that Max will get exactly nine questions

Copghtte oo

(¢) Max really needs to get an A on this test. In order to get an A, he
needs to get nine or more questions right. What is the probability
that Max will get an A? '

“Exercise 4.55 Pregnancy tests  You are marketing a new line of preg-
- nancy tests. The test is simple. You flip a fair coin. If the coin comes up
“heads, you report that the customer is pregnant. If the coin comes up
' tails, you report that the customer is not pregnant.
~(a) Your first customer is a man. What is the probability that the test
" accurately predicts his pregnancy status?
YOur s ( s 4 woman. What is the probability that the
test ately predicts her pregnancy status?
¢) ' After you have ,admi'nistered the test ten times, what is the probabil-
ity that you have not correctly predicted the pregnancy status of any
_ of your customers? <
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ADDITIONAL EXERCISES cont.

(d) After you have admlmstered the test ten tlmes what is the probabil-
ity thatyou correctly predicte egnancy status of af least one of
your customers? o ey

Notice how high the probability of getting at least one customer right is.
This suggests the following scheme for getting rich. Issue ten, or a hun-
dred, or whatever, newsletters offering advice about how to pick stocks.

No matter how unlikely each newsletter is to give good advice, if you
issue enouigh of them at least one is very likely to give good advice. Then
sell your services based on your wonderful track record, pointing to the
successful newsletter as evidence. You would not be the first. We will
return to this kind of problem in Section 5.3.

Problem 4.56 Pregnancy tests, cont. The pregnavicy test of Exercise
4.55 is needlessly complicated. Here is anothier test that is even simpler: just
report that the customer is not pregnant. Roughly, what is the probability that
you-would get the pregnancy status of a mndomly selected college student
right when uszng the szmplzﬁed test?

FURTHER READING

There are-numerous mtroductlons to probabtllty eory Earman and Salmon (1992) deals
with probability theory in the context of the theory of confirmation and is the source of
the stories-about frisbees and coins (pp. 70=74): it also cortains a discussion about the
meaning:of probablhty {op. 74—»89) The Consumer Federation of America (2006) dis-
cusses people’s views about the most pracncable way 1o get rich. The fate of Birmingham
mayor Larry Langford is dlscussed in Tomberlin (2009) and that-of California governor
Arnold Schwarzenegger in McKmIey (2009)
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