CHAPTER

Rational Choice under
Risk and Uncertainty

6.1 Introduction

In Part 2, we left the theory of decision aside for a moment in order to talk
about judgment. Now it is time to return to questions of decision, and spe-
cifically, rational decision. In this chapter we explore the theory of rational
choice under risk and uncertainty. According to the traditional perspective,
you face a choice under uncertainty when the probabilities of the relevant
outcomes are completely unknown or not even meaningful; you face a choice
under risk when the probabilities of the relevant outcomes are both meaning-
ful and known. At the end of the day, we want a theory that gives us princi-
pled answers to the question of what choice to make in any given decision
problem. It will take a moment to develop this theory. We begin by discussing
uncertainty and then proceed to expected value, before getting to expected
utility. Ultimately, expected-utility theory combines the concept of utility from
Chapter 2 with the concept of probability from Chapter 4 into an elegant and
powerful theory of choice under risk.

6.2 Uncertainty

Imagine that you are about to leave your house and have to decide whether
to take an umbrella or to leave it at home (Figure 6.1). You are concerned that
it might rain. If you do not take the umbrella and it does not rain, you will
spend the day dry and happy; if you do not take the umbrella and it does rain,
however, you will be wet and miserable. If you take the umbrella, you will be
dry no matter, but carrying the cumbersome umbrella will infringe on your
happiness. Your decision problem can be represented as in Table 6.1(a).

In a table like this, the left-most column represents your menu, that is, the
options available to you. Other than that, there is one column for each thing
that can happen. These things are referred to as states of the world or simply
states, listed in the top row. Together, they constitute the outcome space. In
this case, obviously, there are only two states: either it rains, or it does not.
Nothing prevents expressing your preferences over the four outcomes by
using our old friend the utility function from Section 2.7. Utility payoffs can
be represented as in Table 6.1(b). Under the circumstances, what is the rational
thing to do? Let us assume that you treat this as a choice under uncertainty.
There are a number of different criteria that could be applied.

According to the maximin criterion, you should choose the alternative that
has the greatest minimum utility payoff. If you take the umbrella, the minimum
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payoft is three; if you leave the umbrella at home, the minimum payoff is zero.
Consequently, maximin reasoning would favor taking the umbrella. According
to the maximax criterion, you should choose the alternative that has the great-
est maximum utility payoff. If you take the umbrella, the maximum payoff is
three; if you leave the umbrella at home, the maximum payoff is five. Thus,
maximax reasoning would favor leaving the umbrella at home. The maximin
reasoner is as cautious as the maximax reasoner is reckless. The former looks at
nothing but the worst possible outcome associated with each act, and the latter
looks at nothing but the best possible outcome associated with each act. Some of
my students started referring to the maximax criterion as the YOLO criterion -
from “You Only Live Once,” for the reader unfamiliar with millennial.

Table 6.1 Umbrella problem

Rain No rain

Take umbrella ~ Dry nothappy  Dry, not happy
Leave umbrella ~Wet, miserable  Dry, happy

(a) Payoffs *

Rain No rain
0 2
3 0

Rain No rain
3 3
0

Take umbrella Take umbrella

Leave umbrella Leave umbrella

(b) Utility payoffs (c) Risk payoffs

Exercise 6.1 The watch Having just bought a brand new, watch, you are |
asked if you also want the optional life-time warranty. )
(a) Would a maximin reasoner purchase the warranty?
(b) What about a maximax reasoner?
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There are other criteria as well. According to the minimax-risk criterion, you
should choose the alternative that is associated with the lowest maximum risk
or regret. If you take the umbrella and it rains, or if you leave the umbrella at
home and it does not rain, you have zero regrets. If you take the umbrella and
it does not rain, your regret equals the best payoff you could have had if you
had acted differently (five) minus your actual payoff (three), that is, two. By
the same token, if you leave the umbrella at home and it does rain, your regret
equals three. These “risk payoffs” can be captured in table form, as shown in
Table 6.1(c). Since bringing the umbrella is associated with the lowest maxi-
mum regret (two, as opposed to three), minimax-risk reasoning favors taking
the umbrella. The term regret aversion is sometimes used when discussing
people’s tendency to behave in such a way as to minimize anticipated regret.
Regret aversion may be driven by loss aversion (see Section 3.5), since regret is
due to the loss of a payoff that could have resulted from the state that obtains,
had the agent acted differently. (We return to the topic of regret in Section 7.4.)

Exercise 6.2 Rational choice under uncertainty This exercise refers to the util-
ity matrix of Table 6.2. What course of action would be favored by (a) the maxi-
min criterion, (b) the maximax criterion, and (c) the minimax-risk criterion? As
part of your answer to (c), make sure to produce the risk-payoff matrix.

Table 6.2 Decision under uncertainty

Sl SZ
A 1 10
B 2
C 3

Quite a number of authors have offered advice about how to minimize regret.
In The Picture of Dorian Gray, Oscar Wilde wrote: “Nowadays most people die
of a sort of creeping common sense, and discover when it is too late that the
only things one never regrets are one’s mistakes.” And books with titles such
as The Top Five Regrets of the Dying aspire to tell us what we too might one
day come to regret: working too much, trying to please others, not allowing
ourselves to be happy, and so oh. Then again, Seren Kierkegaard ~ sometimes
called “the father of existentialism” — altogether despaired of avoiding regret.
“My honest opinion and my friendly advice is this: Do it or do not do it — you
will regret both,” he wrote in a book titled Either/Or.

Problem 6.3 The dating game under uncertainty Imagine that you are

considering whether or not to ask somebody out on a date.

(a) Given your utility function, what course of action would be favored by (i) the max-
imin criterion, (ii) the maximax criterion, and (iii) the minimax-risk criterion?

(b) In the words of Alfred, Lord Tennyson, “'Tis better to have loved and lost / Than
never to have loved at all.” What decision criterion do these lines advocate?

Of all criteria for choice under uncertainty, the maximin criterion is the most
prominent. It is, among other things, an important part of the philosopher John
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Rawls’s theory of justice. In Rawls’s theory, the principles of justice are the terms
of cooperation that rational people would agree to follow in their interactions
with each other if they found themselves behind a “veil of ignorance,” mean-
ing that they were deprived of all morally relevant information about them-
selves, the society in which they live, and their place in that society. Suppose,
for example, that you have to choose whether to live either in a society with
masters and slaves or in a more egalitarian society, without knowing whether
(in the former) you would be master or slave. According to Rawls, the rational
procedure is to rank societies in accordance with the worst possible outcome
(for you) in each society — that is, to apply the maximin criterion — and to choose
the more egalitarian option. Rawls took this to constitute a reason to think that
an egalitarian society is more just than a society of masters and slaves.

Critics have objected to the use of maximin reasoning in this and other sce-
narios. One objection is that maximin reasoning fails to consider relevant utility
information, since for each act, it ignores all payoffs except the worst. Consider
the two decision problems in Table 6.3. Maximin reasoning would favor A in
either scenario. Yet it does not seem completely irrational to favor A over B and
B* over A, since B* but not B upholds the prospect of ten billion utiles.

Table 6.3 More decisions under uncertainty

Sl SZ Sl S2
A 11 A 11
B 0 10 B* 0 100

(@) (b)

Another objection is that maximin reasoning fails to take into account the
chances that the various states of the world will obtain. In a famous critique of
Rawls’s argument, Nobel prize-winning economist John C. Harsanyi offered
the following example:

Example 6.4 Harsanyi’s challenge Suppose you live in New York City and
are offered two jobs at the same time. One is a tedious and badly paid job in
New York City itself, while the other is a very interesting and well-paid job in
Chicago. But the catch is that, if you wanted the Chicago job, you would have
to take a plane from New York to Chicago (for example, because this job would
have to be taken up the very next day). Therefore, there would be a very small
but positive probability that you might be killed in a plane accident.

Assuming that dying in a plane crash is worse than anything that could hap-
pen on the streets of New York, as Harsanyi points out, maximin reasoning
would favor the tedious NYC job, no matter how much you prefer the Chicago
job and no matter how unlikely you think a plane accident might be. This does
not sound quite right.

Perhaps there are scenarios in which the probabilities of the relevant out-
comes are completely unknown or not even meaningful, and perhaps in those
scenarios maximin reasoning — or one of the other criteria discussed earlier
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in this section — is appropriate. Yet the upshot is that, whenever possible, it is
perfectly reasonable to pay attention to all possible payoffs as well as to the
probabilities that the various states might obtain. When facing the umbrella
problem in Table 6.1, for example, it seems rational to take into account all
four cells in the payoff matrix as well as the probability of rain.

6.3 Expected value

From now on I will assume that it is both meaningful and possible to assign
probabilities to outcomes; that is, we will be leaving the realm of choice under
uncertainty and entering the kingdom of choice under risk. In this section,
we explore one particularly straightforward approach — expected value ~ that
takes the entire payoff matrix as well as probabilities into account.

The expected value of a gamble is what you can expect to win on the aver-
age, in the long run, when you play the gamble. Suppose I make you the fol-
lowing offer: I will flip a fair coin, and I will give you $10 if the coin comes up
heads (H), and nothing if the coin comes up tails (T). This is a reasonably good
deal: with 50 percent probability you will become $10 richer. This gamble can
easily be represented in tree and table form, as shown in Figure 6.2. It is clear
that on the average, in the long run, you would get $5 when playing this gam-
ble; in other words, the expected value of the gamble is $5. That is the same
as the figure you get if you multiply the probability of winning (1/2) by the
dollar amount you stand to win ($10).

Exercise 6.5 Lotto 6/49 Represent the gamble accepted by someone who
plays Lotto 6/49 (from Exercise 4.28 on page 85) as in Figure 6.2(a) and (b).
Assume that the grand prize is a million dollars.

Example 6.6 Lotto 6/49, cont. What is the expected value of a Lotto 6/49
ticket, if the grand prize is a million dollars?

We know from Exercise 4.28 that the ticket is a winner one time out of
13,983,816. The means that the ticket holder will receive, on the average, in the

1/2 $0
T
(a)
HooT

Offer  $10 $0

(b)

B Figure 6.2 [ETRIAS
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long run, 1/13,983,816 * $1,000,000. You get the same answer if you multiply
the probability of winning by the amount won: 0.000,000,07 * $1,000,000 =
$0.07. That is 7 cents.

Problem 6.7 What would you pay to play this gamble? If you are willing to pay
to play this game, what do you hope to achieve?

Sometimes two or more acts are available to you, in which case you have a
choice to make. Imagine, for instance, that you can choose between the gam-
ble in Figure 6.2 and $4 for sure. If so, we can represent your decision problem
in tree form as shown in Figure 6.3(a). We can also think of the outcome of
rejecting the gamble as $4 no matter whether the coin comes up heads or tails.
Thus, we can think of the gamble as identical to that in Figure 6.3(b). The latter
decision tree makes it obvious how to represent this gamble in table form (see
Figure 6.3(c)). The numbers in the row marked “Reject” represent the fact that
if you reject the gamble, you keep the four dollars whether or not it turns out
to be a winner.

Accept $10 $0
Reject $4 $4

()

Figuré 6.3' Choice between gambles
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hswer if you multiply Exercise 6.8 Expected value For the following questions, refer to Figure 6.3(c).
000,07 * $1,000,000 = (a) What is the expected value of accepting this gamble?
(b) What is the expected value of rejecting it?

I ——

you are willing to pay You may be wondering if all gambles can be represented in table form: they
[ — can. Consider, for instance, what would happen if you win the right to play
hich case you have a the gamble from Figure 6.2 if you flip a coin and it comes up heads. If so, the
W between the gamm- » complex gamble you are playing would look like Figure 6.4(a). The key to
ose ; ision problem ’ analyzing more complex, multi-stage gambles like this is to use one of the AND
‘our fet;e outcome of ‘ rules to construct a simpler one. In this case, the gamble gives you a 1/4 prob-
nink © heads or tails. ] ability of winning $10 and a 3/4 probability of winning nothing. Hence, the
qmes u(})) 3(b). The latter gamble can also be represented as in Figure 6.4(b). This makes it obvious how
Fqgure. -t bl(.e form (see ] to represent the complex gamble in table form, as in Figure 6.4(c). There can
1,],fl'lble meit the fact that ' be more than two acts or more than two states. So, in general, we end up with
etfe};r: not it turns out a matrix like Table 6.4. By now, it is obvious how to define expected value.

Definition 6.9 Expected value Given a decision problem as in Table 6.4, the
expected value EV(A) of an act A, is given by:

510 i EV(A)= Pr(S)#C, +Pr(S)*C,+ ... +Pr(S)*C,
= > Pr(S)C,.
50 -
z
; H
H
1/2
0
12 79
- $10
- 1/2 0
> 80 : f | T
- @
144 ' A . HH .
1 1/4<$10
bhe B 3/4 $0
1 Not-HH
. (b)
HH  =HH

Gamble $10 $0
(c)

— 1 B TN
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If this equation looks complicated, notice that actual computations are easy.
For each state — that is, each column in the table — you multiply the probability
of that state occurring with what you would get if it did; then you add all your
numbers up. If you want to compare two or more acts, just complete the pro-
cedure for each act and compare your numbers. As you can tell, this formula
gives some weight to each cell in the payoff matrix and to the probabilities
that the various states of the world will obtain.

Table 6.4 The general decision problem

1 S2 n
Al Cu Clz Cln
A C C .. C

m ml m2 mn

The table form is often convenient when computing expected values, since
it makes it obvious how to apply the formula in Definition 6.9. The fact that
more complex gambles can also be represented in table form means that the
formula applies even in the case of more complex gambles. Hence, at least as
long as outcomes can be described in terms of dollars, lives lost, or the like, the
concept is well defined. To illustrate how useful this kind of knowledge can
be, let us examine decision problem that you might encounter in casinos and
other real-world environments.

Exercise 6.10 Roulette A roulette wheel has slots numbered 0,00,1,2,3, ...,
36 (see Figure 6.5). The players make their bets, the croupier spins the wheel,
and depending on the outcome, payouts may or may not be made. Players can
make a variety of bets. Table 6.5 lists the bets that can be made as well as the
associated payoffs for a player who wins after placing a one-dollar bet. Fill in
the table.

F‘igure767.'5 Roulette table
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Table 6.5 Roulette bets
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Exercise 6.11 Parking You are considering whether to park legally or ille-
gally and decide to be rational about it. Use negative numbers to represent
costs in your expected-value calculations.

(a) Suppose that a parking ticket costs $30 and that the probability of getting
a ticket if you park illegally is 1/5. What is the expected value of parking
illegally?

(b) Assuming that you use expected-value calculations as a guide in life,
would it be worth paying $5 in order to park legally?

cing a one-

N

It is perfectly possible to compute expected values when there is more than
one state with a non-zero payoff.

Example 6.12 You are offered the following gamble: if a (fair) coin comes
-up heads, you receive $10; if the coin comes up tails, you pay $10. What is the
expected value of this gamble?

The expected value of this gambleis 1/2 % 10 + 1/2 * (=10) = 0.

Exercise 6.13  Suppose somebody intends to roll a fair die and pay you $1 if
she rolls a one, $2 if she rolls a two, and so on. What is the expected value of
this gamble?
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Exercise 6.14 Deal or No Deal You are on the show Deal or No Deal, where
you are facing so many boxes, each of which contains some (unknown)
amount of money (see Figure 6.6). At this stage, you are facing three boxes.
One of them contains $900,000, one contains $300,000, and one contains $60,
but you do not know which is which. Here are the rules: if you choose to open
the boxes, you can open them in any order you like, but you can keep the
amount contained in the last box only.

(a) What is the expected value of opening the three boxes?

(b) The host gives you the choice between a sure $400,000 and the right to
open the three boxes. Assuming you want to maximize expected value,
which should you choose?

(¢) You decline the $400,000 and open a box. Unfortunately, it contains the
$900,000. What is the expected value of opening the remaining two boxes?

(d) The host gives you the choice between a sure $155,000 and the right to
open the remaining two boxes. Assuming you want to maximize expected
value, which should you choose?

Expected-value calculations form the core of cost-benefit analysis, which
is used to determine whether all sorts of projects are worth undertaking.
Corporations engage in cost-benefit analysis to determine whether to invest
in a new plant, start a new marketing campaign, and so on. Governments
engage in cost-benefit analysis to determine whether to build bridges, rail-
ways, and airports; whether to incentivize foreign corporations to relocate
there; whether to overhaul the tax system; and many other things. The basic
idea is simply to compare expected benefits with expected costs: if the benefits
exceed or equal the cost, the assumption is that it is worth proceeding, other-
wise not.

So far, we have used our knowledge of probabilities to compute expected
values. It is also possible to use Definition 6.9 to compute probabilities, pro-
vided that we know enough about the expected values. So, for example, we
can ask the following question.

; i, Flgure 66 Deal or No Deal




yw Deal or No Deal, where
ontains some (unknown)
ou are facing three boxes.
000, and one contains $60,
cules: if you choose to Open
like, but you can keep the

ge boxes? .
- $400,000 and the right to
y maximize expected value,

nfortunately, it contains the
g two boxes?

ng the remainin: ;
lrg $155,000 and the right to

u want to maximize expected

cost-benefit analysis, wnich
jects are worth undertnk1n$.
y determine whether to invest
ign, and so on. Governments
vhether t0 build bridges, rail-
reigh corporations to relocat.e
1 many other things. The ba;stlc
th expected costs: if tne benefits
it it is worth proceeding, other-

ute expected

ilities to comp
obabiliti pro-

9 to compute probabilities,
ted values. Sp, for example, we

Chapter 6 Rational Choice under Risk and Uncertainty

Example 6.15 Parking, cont. If a parking ticket costs $30, and it costs $5
to park legally, what does the probability of getting a ticket need to be for
the expected value of parking legally to equal the expected value of parking
illegally?

We solve this problem by setting up an equation. Assume, first of all, that
the probability of getting a parking ticket when you park illegally is p. Assume,
further, that the expected value of parking illegally equals the expected value
of parking legally: p * (—30) = —5. Solving for p, we get that p = —5/-30 =
1/6. This means that if the probability of getting a ticket is 1/6, the expected
values are identical. If p is greater than 1/6, the expected value of parking
legally is greater than the expected value of parking illegally; if p is lower than
1/6, the expected value of parking legally is smaller than the expected value
of parking illegally.

Exercise 6.16 Parking, cont. Assume that the cost of parking legally is still $5.

(a) If the parking ticket costs $100, what does the probability need to be for
the expected value of parking legally to equal the expected value of park-
ing illegally?

(b) What if the ticket costs $10?

Problem 6.17 Parking, cont. Given what you pay for parking and given what
parking fines are in your avea, what does the probability of getting a ticket need to
be for the expected value of parking legally to equal the expected value of parking
illegally?

There is a whole field called law and economics that addresses questions such
as this, exploring the conditions under which it makes sense for people to
break the law, and how to design the law so as to generate the optimal level
of crime.

Exercise 6.18 Lotto 6/49, cont. Suppose a Lotto 6/49 ticket costs $1 and that
the winner will receive $1,000,000. What does the probability of winning need
to be for this lottery to be actuarially fair, that is, for its price to equal its
expected value?

- Exercise 6.19 Warranties A tablet computer costs $325; the optional one-
. year warranty, which will replace the tablet computer at rio cost if it breaks,
costs $79. What does the probability p of the tablet computer breaking need
to be for the expected value of purchasing the optional warranty.to equal the
expected value of not purchasing it?

As this example suggests, the price of warranties is often inflated relative to
the probability that the product will break (for the average person, anyway).

Unfortunately, when used as a guide in life, expected-value calculations
ve drawbacks. Obviously, we can only compute expected values when
nsequences can be described in terms of dollars, lives lost, or similar. The
efinition of expected value makes no sense if the consequences C, are not
pressed in numbers. Moreover, under many conditions expected-value

139
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considerations give apparently perverse advice, and therefore cannot serve
as a general guide to decision-making in real life. Consider, for example, what
to do if you have 30 minutes in a casino before the mafia comes after you to
reclaim your debts. Assuming that you will be in deep trouble unless you
come up with, say, $10,000 before they show up, gambling can be a very rea-
sonable thing to do, even if the expected values are low. Consider, finally, the
following famous example.

Example 6.20 St Petersburg paradox A gamble is resolved by tossing an
unbiased coin as many times as necessary t0 obtain heads. If it takes only one
toss, the payoff is $2; if it takes two tosses, it is $4; if it takes three, it is $8; and
so forth (see Table 6.6). What is the expected value of the gamble?

Notice that the probability of getting heads on the first flip (H) is 1/2; the
probability of getting tails on the first flip and heads on the second (TH) is
1/4; the probability of getting tails on the first two flips and heads on the third
(TTH) is 1/8; and so on. Thus, the expected value of the gamble is:

%*$2+%*$4+%*$8+...=
$1 + $1 + §1 + ... =%,

In sum, the expected value of the gamble is infinite. This means that if you try
to maximize expected value, you should be willing to pay any (finite) price for
this gamble. That does not seem right, which is why the result is called the St
Petersburg paradox. And it would not seem right even if you could trust that
you would receive the promised payoffs no matter what happens.

Table 6.6 St Petersburg gamble

H TH TTH

St Petersburg gamble $2 $4 $8

6.4 Expected utility

Our calculations in Section 4.4 suggested that games like Lotto 6/49 are sim-
ply not worth playing (see Exercise 4.28). But the story does not end there. For
one thing, as our deliberations in this chapter have illustrated, the size of the
prize matters (see, for instance, Example 6.6). Equally importantly, a dollar is
not as valuable as every other dollar. You may care more about a dollar bill
if it is the first in your pocket than if it is the tenth. Or, if the mafia is coming
after you to settle a $10,000 debt, the first 9999 dollar bills may be completely
useless to you, since you will be dead either way, whereas the 10,000th can
save your life.

To capture this kind of phenomenon, and to resolve the St Petersburg para-
dox, we simply reintroduce the concept of utility from Section 2.7. The utility
of money is often represented in a graph, with money (or wealth, or income)
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on the x-axis and utility on the y-axis. In Figure 6.7, for example, the dashed
line represents the expected value of money if u(x) = x; the solid line repre-
sents the utility of money if the mafia is coming after you; and the dotted line
represents the case when a dollar becomes worth less and less as you get more
of them, that is, when the marginal utility of money is diminishing. When the
curve bends downwards when you move to the right, as the dotted line does,
itis said to be concave.

For most goods, it is probably true that the marginal utility is diminish-
g. When buying a newspaper from a box, you put a few coins in the slot,
pen a door, and grab a newspaper from the stack. Nothing prevents you
m grabbing two or more copies, but most people do not. Why? Newspaper
xes work because the marginal utility of newspapers is sharply diminish-
ing. While the first copy of the Wall Street Journal permits you to learn what is
oing on in the markets, subsequent copies are best used to make funny hats
towrap fish. There are exceptions to the rule, however. Beer is not sold like
ewspapers, and for good reason: its marginal utility. is nat diminishing and
hay even be increasing. As you \may have read in a book, after people have
ad a beer, a second beer frequently seems like an even better idea than the
st one did, and so forth. This is why a beer — as in “Let’s have a beer” — is a
ical animal not unlike unicorns.

How does this help? Consider the St Petersburg gamble from Section 6.3.
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Mathematically, the utility of a given amount of money x might equal the loga-
rithm of x, so that u(x) = log(x). If so, we can transform Table 6.6 into a table in
which consequences are expressed in utilities instead of dollars (see Table 6.7).
Now, we can compute the expected utility of the gamble. The expected utility
of a gamble is the amount of utility you can expect to gain on the average, in the
long run, when you play the gamble. In the case of the St Petersburg gamble,
the expected utility is:

1 :
—12— #log(2) + i *log(4) + 3 *log(8) + ... =~ 0.602 < x.

This way, the expected utility of the St Petersburg gamble is well-defined and
finite. (In Example 6.37 we will compute what the gamble is worth in dollars
and cents.) Formally, this is how we define expected utility:

Definition 6.21 Expected utility Given a decision problem like Table 6.4, the
expected utility EU (A) of an act A, is given by:

EU(A) = Pr(S)*u(C,) + Pr(S)*u(Cy) + ... + Pr(S,)*u(C,)

- 2 Pr(S)u(C,)

Somebody who chooses that option with the greatest expected utility is said
to engage in expected-utility maximization. Examples like the St Petersburg
paradox suggest that expected-utility maximization is both a better guide to
behavior, and a better description of actual behavior, than expected-value
maximization. That is, the theory of expected utility is a better normative
theory, and a better descriptive theory, than the theory of expected value.
Computing expected utilities is not much harder than computing expected
values, except that you need to multiply each probability with the utility of
each outcome.

Example 6.22 Expected utility Consider, again, the gamble from Figure 6.3(c).
Suppose that your utility function is u(x) = Vx. Should you accept or reject the
gamble? | . - ,

The utility of rejecting the gamble is EU(R) = u(4) = V4 = 2. The utility of
accepting the gamble is EU(A) = 1/2 * u(10) + 1/2%u(0) =1/2% V10 =~ 1.58.
The rational thing to do is to reject the gamble. :

Exercise 6.23 Expected utility, cont. Suppose instead that your utility func-
tion is u(x) = x2 i
(a) What is the expected utility of rejecting the gamble?
(b) What is the expected utility of accepting the gamble?
(c) What should you do?

When the curve bends upwards as you move from left to right, like the utility,
function u(x) = x2 does, the curve is said to be convex.




¥ might equal the 1og.a—
Table 6.6 into a table in
f dollars (see Table 6.7).
yle. The expected u‘tihty
ain on the average, in the
’e St Petersburg gamble,

~ 0.602 < .

nble is well-defined and
mble is worth in dollars
utility:

S —
roblem like Table 6.4, the

.+ Pr(s.ﬂ) * u(cin)

[

est expected utility is said
ples like the St Petergburg
yn is both a better guide to
wior, than expected-val.ue
ility is a better normative
theory of expected value.
- than computing engcted
obability with the utility of

1e gamble from Figurg 6.3(c)-

jould you accept or reject the
= tility of

u(d) = V& =2.Theu

1 xu(0)=1/2% V10 ~ 1.58.

nstead that your utility func-

;amble?

om left to right, like the utility

ionvex.

Chapter 6 Rational Choice under Risk and Uncertainty

Exercise 6.24 Lotto 6/49, cont. Assume still that your utility function is
u(x) = Vx, that the probability of winning at Lotto 6/49 is one in 13,983,816,
and that the prize is a million dollars.

(a) What is the expected utility of holding a Lotto ticket?

(b) What is the expected utility of the dollar you would have to give up in
order to receive the Lotto ticket?
() Which would you prefer?

Exercise 6.25 Expected utility, again Suppose that you are facing three gam-

bles. A gives you a 1/3 probability of winning $9. B gives you a 1/4 probabil-

ity of winning $16. C gives you a 1/5 probability of winning $25.

(a) What is the expected utility of each of these gambles if your utility func-
tion is u(x) = Vx, and which one should you choose?

(b) What is the expected utility of each of these gambles if your utility func-
tion is u(x) = x?, and which one should you choose?

Exercise 6.26 Expected value and expected utility Assume again that your
utility function is u(x) = Vx. Compute (i) the expected value and (ii) the
expected utility of the following gambles:

(@) G:You have a 1/4 chance of winning $25 and a 3/4 chance of winning $1.
(b) G*: You have a 2/3 chance of winning $7 and a 1/3 chance of winning $4.

Another major advantage of the expected-utility framework is that it can be
applied to decisions that do not involve consequences expressed in terms of
dollars, lives lost, or the like. The expected-utility formula can be used quite
generally, as long as it is possible to assign utilities to all outcomes. That is to
say that expected utilities can be calculated whenever you have preferences
over outcomes — which you do, if you are rational. Hence, expected-utility
theory applies, at least potentially, to all decisions. The following exercises

illustrate how expected-utility reasoning applies even when consequences are
not obviously quantifiable.

Exercise 6.27 Hearing loss A patient with hearing loss is considering
whether to have surgery. If she does not have the surgery, her hearing will
get no better and no worse. If she does have the surgery, there is an 85 percent
chance that her hearing will improve, and a five percent chance that it will
deteriorate. If she does not have the surgery, her utility will be zero. If she does
have the surgery and her hearing improves, her utility will be ten. If she does
have the surgery but her hearing is no better and no worse, her utility will be
minus two. If she does have the surgery and her hearing deteriorates, her util-
ity will be minus ten.

(a) Draw a tree representing the decision problem.

(b) Draw a table representing the problem.

() What is the expected utility of not having the operation?

(d) What is the expected utility of having the operation?

(e) What should the patient do?
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Exercise 6.28 Thanksgiving indecision Suppose you are contemplating
whether to go home for Thanksgiving. You would like to see your family, but
you are worried that your aunt may be there, and you genuinely hate your
aunt. If you stay in town you are hoping to stay with your roommate, but then
again, there is some chance that she will leave town. The probability that your
aunt shows up is 1/4, and the probability that your roommate leaves town
is 1/3. The utility of celebrating Thanksgiving with your family without the
aunt is 12 and with the aunt is minus two. The utility of staying in your dorm
without your roommate is three and with the roommate is nine.

(a) Draw a decision tree.

(b) Calculate the expected utility of going home and of staying in town.

(¢) What should you do?

Exercise 6.29 Pascal's wager The French seventeenth-century mathemati-

cian and philosopher Blaise Pascal suggested the following argument for a

belief in God. The argument is frequently referred to as Pascal’s wager. Either

God exists (G), or He does not (-G). We have the choice between believing (B)

or not believing (- B). If God does not exist, it does not matter if we believe

or not: the utility would be the same. If God does exist, however, it matters a

great deal: if we do believe, we will enjoy eternal bliss; if we do not believe,

we will burn in hell.

(a) Represent the decision problem in table form, making up suitable utilities
as you go along.

(b) Let p denote the probability that G obtains. What is the expected utility of
B and -B?

(c) What should you do?

Notice that it does not matter what p is. B dominates =B in the sense thatBis
associated with a higher expected utility no matter what.

Of course, Definition 6.21 can also be used to compute probabilities pro-
vided that we know enough about the expected utilities. So, for example, we
can ask the following kinds of question.

Example 6.30 Umbrella problem, cont. This question refers to Table 6.1(b),
that is, the umbrella problem from Section 6.2. If the probability of rain is p,
what does p need to be for the expected utility of taking the umbrella to equal
the expected utility of leaving it at home?

To answer this problem, set up the following equation: EU (Take umbrella)
= EU (Leave umbrella). Given the utilities in Table 6.1(b), this implies that 3 =

p*0 + (1 = p) * 5, which implies thatp = 2/5.

Exercise 6.31 Indifference This question refers to Table 6.2. Let p denote the

probability that S, obtains.

(@) If an expected-utility maximizer is indifferent between A and B, what is
his p?

(b) If another expected-utility maximizer is indifferent between B and C,
what is her p? '

(c) If a third expected-utility maximizer is indifferent between A and C, what
is their p?
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6.5 Attitudes toward risk

As you may have noticed already, expected-utility theory has implications for
attitudes toward risk. Whether you reject a gamble (as in Example 6.22) or
accept it (as in Exercise 6.23) depends, at least to some extent, on the shape
of your utility function. This means that we can explain people’s attitudes
toward risk in terms of the character of their utility function.

The theory of expected utility can explain why people often reject a gamble
in favor of a sure dollar amount equal to its expected value. We simply have to

add to the theory of expected utility the auxiliary assumption of diminishing
marginal utility of money.

Example 6.32 Risk aversion Suppose you own $2 and are offered a gamble
giving you a 50 percent chance of winning a dollar and a 50 percent chance of
losing a dollar. This decision problem can be represented as in Figure 6.8. Your
utility function is u(x) = V', so that marginal utility is diminishing. Should
you take the gamble?

The problem can be represented as in Table 6.8. Expected-utility cal-
culations show that you should reject the gamble, since E U(Accept) =
12 #V3+1/2 V1 =~ 1.37 and EU(Reject) = V2 ~ 1.41.

Table 6.8 Another gambling problem

Win (1/2)  Lose (1/2)
Accept (A) V3 V1
Reject (R) V2 V2

An expected-value maximizer would have been indifferent between accept-
ing and rejecting this gamble, since both expected values are $2. Trivially, then,
if your utility function is u(x) = x, you will be indifferent between the two
options. For comparison, consider the following problem.

Exercise 6.33 Risk proneness Consider, again, the gamble in Figure 6.8.
Now suppose that your utility function is 1(x) = x2. Unlike the previous utility
function, which gets flatter when amounts increase, this utility function gets

H
1/2 $3

$1
12 5

$2

ELTVCKCRE Risk aversion
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steeper. Compute the expected utilities of accepting and rejecting the gamble.
What should you do?

As all these examples suggest, the shape of your utility function relates to
your attitude toward risk — or your risk preference — in the following way.
Whether you should reject or accept a gamble with an expected value of zero
depends on whether your utility function gets flatter or steeper (bends down-
wards or upwards). In general, we say that you are risk averse if you would
reject a gamble in favor of a sure dollar amount equal to its expected value,
risk prone if you would accept, and risk neutral if you are indifferent. Thus,
you are risk averse if your utility function bends downwards (as you move
from left to right), risk prone if your utility function bends upwards, and risk
neutral if your utility function is a straight line.

Notice that the theory itself does not specify what the shape of your util-
ity function should be. Most of the time, economists will assume that utility
for money is increasing, so that more money is better. But that is an auxiliary
assumption, which is no part of the theory. The theory does not constrain your
attitude toward risk; it does not even say that your attitude toward risk has to
be the same when you get more (or less money). For instance, you may have
a utility function that looks like the solid line in Figure 6.9. Here, you are risk
prone in the range below x* and risk averse in the range above x*. Or, you
may have a utility function that looks like the dashed line. Here, you are risk
averse in the range below x* and risk prone in the range above x*. The next
exercise illustrates the manner in which attitudes toward risk are expressed in
a variety of real-world behaviors. '

Exercise 6.34 Attitudes to risk As far as you can tell, are the following peo-
ple risk prone, risk averse, or risk neutral?

(a) People who invest in the stock market rather than in savings accounts.
(b) People who invest in bonds rather than in stocks.

u(x) w
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(c) People who buy Iottery tickets rather than holding on to the cash.
(d) People who buy home insurance.

(e) People who play roulette.

(f) People who consistently maximize expected value.

(g) People who have unsafe sex.

Sometimes it is useful to compute the certainty equivalent of a gamble. The
certainty equivalent of a gamble is the amount of money such that you are
indifferent between playing the gamble and receiving the amount for sure.

Definition 6.35 Certainty equivalent The certainty equivalent of a gamble G
is the number CE that satisfies this equation: u(CE) = EU(G).

The certainty equivalent represents what the gamble is worth to you. The certainty
equivalent determines your willingness-to-pay (WTP) and your willingness-
to-accept (WTA). In graphical terms, suppose that you have to find the cer-
tainty equivalent given a utility function like that in Figure 6.10. Suppose the

gamble gives you a 50 percent chance of winning A and a 50 percent chance
of winning B.

1. Put a dot on the utility curve right above A. This dot represents the utility
of A (on the y-axis).

2. Put another dot on the utility curve right above B. This dot represents the
utility of B (on the y-axis).

3. Draw a straight line between the two dots.

4. Put an X half way down the straight line. The X represents the expected
utility of the gamble (on the y-axis) and the expected value of the gamble
(on the x-axis).

5. Move sideways from the X until you hit the utility curve.

6. Move straight down to the x-axis, and you have the certainty equivalent
(on the x-axis).

u(x)Ar
EUG | — — — — = -x
AT
el [
) e | |
| |
[ |
| |
H | ] H ;
0 A CE(G) EV(G) B x

ELINEXRIVE Finding the certainty equivalent
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The procedure is illustrated in Figure 6.10. The same procedure can also be
used for gambles where the probabilities are not 50-50. The only thing that
changes is the placement of the X on the straight line in Figure 6.10. If there
is, say, a 3/7 probability of winning A, and a 4/7 probability of winning B,
starting from the left, you put that X four-sevenths of the way up from A to
B. As the probability of winning B increases, the X will move right toward
B and the expected utility of the gamble will approach the utility of B; as
the probability of winning A increases, the X will move left toward A and
the expected utility of the gamble will approach the utility of A. This makes
sense.

Exercise 6.36 Certainty equivalents Demonstrate how to find the certainty
equivalent of the same gamble in the case when the utility function bends
upwards. Confirm that the certainty equivalent is greater than the expected
value.

Remember: when the utility function bends downwards, you are risk averse,
the dashed line falls below the utility function, and the certainty equivalent is
less than the expected value. When the utility function bends upwards, you
are risk prone, the dashed line falls above the utility function, and the cer-
tainty equivalent is greater than the expected value. Read this paragraph one
more time to make sure you understand what is going on. :

In algebraic terms, you get the certainty equivalent of a gamble by com-
puting the expected utility x of the gamble, and then solving for u(CE) = x.
Thus, you get the answer by computing CE = u!(x). As long as u(-) is strictly
increasing in money, which it ordinarily will be, the inverse function is well
defined. Consider the gamble in Table 6.8. We know that the expected utility
of this gamble is approximately 1.37. You get the certainty equivalent by solv-
ing for u(CE) = 1.37. Given our utility function u(x) = V/x, this implies that
CE = 1.372 ~ 1.88. Because you are risk averse, the certainty equivalent of the
gamble is lower than the expected value of 2.

Example 6.37 St Petersburg paradox, cont. In Section 6.4 we learned that
for an agent with utility function u(x) = log(x), the expected utility of the
St Petersburg gamble is approximately 0.602. What is the certainty equivalent
of the gamble?

We compute the certainty equivalent by solving the following equation:
log(CE) = 0.602. Thus, the certainty equivalent CE = 10°¢2 =~ 4.00. That is, the
St Petersburg gamble is worth $4.

Exercise 6.38 Compute the certainty equivalent of the gamble in Figure 6.8,
using the utility function u(x) = x%
We end this section with a series of exercises.

Exercise 6.39 Suppose that you are offered the choice between $4 and the
following gamble, G: 1/4 probability of winning $9 and a 3/4 probability of
winning $1.
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(a) Suppose that your utility function is u(x) = Vx. What is the utility of $4?
What is the utility of G? What is the certainty equivalent? Which would
you choose?

(b) Suppose instead that your utility function is u(x) = x2. What is the utility

of $4? What is the utility of G? What is the certainty equivalent? Which
would you choose?

Exercise 6.40 Suppose that your utility function is u(x) = V/x, and that you
are offered a gamble which allows you to win $4 if you are lucky and $1 if you
are not.

(a) Suppose that the probability of winning $4 is 1/4 and the probability of
winning $1 is 3/4. What is the expected value of this gamble?

(b) Suppose that the probability of winning $4 is still 1/4 and the probability
of winning $1 is 3/4. What is the expected utility of this gamble?

(¢) Suppose that the probability of winning $4 is still 1/4 and the probability
of winning $1 is 3/4. What is the certainty equivalent of the gamble; that
is, what is the amount of money X such that you are indifferent between
receiving $X for sure and playing the gamble?

(d) Imagine now that the probability of winning $4 is p and the probability of
winning $1 is (1 ~ p). If the utility of the gamble equals 3/2, what is p?

Exercise 6.41 Suppose that your utility function is u(x) = V%, and that you
are offered a gamble which allows you to win $16 if you are lucky and $4 if
you are not.

(a) Suppose that the probability of winning $16 is 1/4 and the probability of
winning $4 is 3/4. What is the expected utility of this gamble?

(b) Suppose that the probability of winning $16 is still 1/4 and the probability
of winning $4 is 3/4. What is the certainty equivalent of the gamble?

(¢) Imagine now that the probability of winning $16 is p and the probability
of winning $4 is (1 — p). If the expected utility of the gamble equals 9/4,
what is p?

(d) Are you risk averse or risk prone, given the utility function above?

Exercise 6.42 Lotto 6/49, cont. Compute the certainty equivalent of the
Lotto 6/49 ticket from Exercise 4.28 if u(x) = Vx

(N

6.6 Discussion

Inthis chapter, we have explored principles of rational choice under risk and
uncertainty. As pointed out in the introduction to this chapter, according to
the traditional perspective, you face a choice under uncertainty when prob-
abilities are unknown or not even meaningful. In Section 6.2, we explored
several principles of rational choice that may apply under such conditions.
When it is both meaningful and possible to assign probabilities to the rele-
vant states of the world, it becomes possible to compute expectations, which
permits you to apply expected-value and expected-utility theory instead.
The distinction between risk and uncertainty is far from sharp. In real

life, it may not be obvious whether to treat a decision as the one or the other.
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Consider the regulation of new and unstudied chemical substances. Though
there are necessarily little hard data on such substances, there is always some
probability that they will turn out to be toxic. Some people argue that this
means that policy-makers are facing a choice under uncertainty, that the maxi-
min criterion applies, and that new chemicals should be banned or heavily
regulated until their safety can be established. Others argue that we can and
must assign probabilities to all outcomes, that the probability that new sub-
stances will turn out to be truly dangerous is low, and that expected-utility
calculations will favor permitting their use (unless or until their toxicity has
been established). Whether we treat a decision as a choice under uncertainty
or under risk, therefore, can have real consequences. And it is not obvious
how to settle such issues in a non-arbitrary way. (We will return to this topic
under the heading of ambiguous probabilities in Section 7.5.)

One thing to note is that you cannot judge whether a decision was rational
or not by examining the outcome alone. A rational decision, as you know, is a
decision that maximizes expected utility given your beliefs at the time when
you make the decision. Such a decision might lead to adverse outcomes. If
something bad happens as a result of your decision, that does not mean you
acted irrationally: you may just have been unlucky. Sometimes decision theo-
rists use the term “right” to denote the decisions that lead to the best possible
outcome. The fact that good decisions can have bad outcomes means that deci-
sions can be rational but wrong. They can also be irrational but right, as when
you do something completely reckless but see good results anyway; buying a
lottery ticket as a means to get rich and winning truckloads of money might |
fall in this category. It goes without saying that we always want to make the
right decision. The problem, of course, is that we do not know ahead of time
which decision is the right one. That is why we aim for the rational decision -
being the one with the greatest expectation of future utility.

Example 6.43 The rationality of having children It is sometimes argued that
certain decisions cannot be made rationally. Philosopher L. A. Paul, for exam-
ple, has argued that it is impossible to make a rational decision about havinga
child, because you cannot know ahead of time what it will be like, for you, to
have a child. But such arguments may confuse the rational with the right. It is
true that you cannot know what the right decision is: you may be very happy
with a child, or you may be miserable. But you never know ahead of time what
the right decision is. Luckily, ignorance is no obstacle to making a rational deci-
sion, as “rationality” is understood here. Rationality does not require that you
know what anything is like — only that you choose whatever option maximizes
expected utility given your beliefs at the time you are making the decision.

We will return to the topic of the right and the rational in Section 7.7.

Our study of the theory of choice under risk sheds further light on the eco-
nomic approach to behavior as understood by Gary Becker, and in particu-
lar on what he had in mind when talking about maximizing behavior (see
Section 2.8). Recall (from Section 4.7) that the standard approach does not
assume that people consciously or not perform calculations in their heads: all
talk about maximization (or optimization) is shorthand for the satisfaction of
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preferences. Notice also that this approach does not assume that people are
omniscient, in the sense that they know what state of the world will obtain.
What it does assume is that people assign probabilities to states of the world,
that these probabilities satisfy the axioms of the probability calculus, that peo-
ple assign utilities to outcomes, and that they choose that alternative which
has the greatest expected utility given the probabilities and utilities.

In the next chapter, we consider some conditions under which these
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i ADDITIONAL EXERCISES

Exercise 6.44 Deal or No Deal, cont.  You are on Deal or No Deal again,
and you are facing three boxes. One of the three contains $1,000,000, one
contains $1000, and one contains $10, Now the dealer offers you $250,000
if you give up your right to open the boxes. :

(a) Assuming that you use expected value as your guide in life, would
L you choose the sure amount or the right to open the boxes?

(b) Assuming that your utility function u(x) = Vx, and that you use
expected utility as your guide in life, would you choose the sure
amount or the right to open the boxes?

(¢) - Given the utility function, what is the lowest amount in exchange for
which you would give up your right to open the boxes?

Exercise 6.45 The humiliation show = You are on a game show where
people embarrass themselves in the hope of winning a new car. You are
given the choice between pressing a blue button and pressing a red button.
(a) If you press the blue button, any one of two things can happen: with
_aprobability of 2/3, youwin'a live frog (utility —1), and with a prob-
ability of 1/3 you win a bicycle (utility 11). Compute the expected
utility of pressing the blue button. '
(b) If you press the red button, any one of three things can happen: with
a probability of 1/9 you win the car (utility 283), with a probability
of 3/9 you win a decorative painting of a ballerina crying in the sun-
set (utility 1), and with a probability of 5/9 you end up covered in
green slime (utility —50). Compute the expected utility of pressing
the red button. : b .
() What should youdo?

Exercise 6.46 Misguided criticism - Some critics attribute to neoclassi-
cal economists the view that human beings have the ability to compute
solutions. to every maximization problem, no matter how complicated,
in their heads and on the fly. For example: “Traditional models of
unbounded rationality and optimization in cognitive science, econom-
ics, and ‘animal behavior have ed to view decision-makers as pos-
sessing supernamral‘pQW“er' ) \
time.” Explain why this critic
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FURTHER READING
hoice under uncertainty is Luce and Raiffa
Rawls's theory of justice and Harsanyi (1975)
tility-theory include Allingham (2002) and
etting one's mistakes appears in Wilde (1998
Ware (2012); and Kierkegaard (2000 [1843],
 view that one cannot rationally decide

d Healy (2013). The critics are Todd and




