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10.1 Introduction

So far, we have assumed that the outcomes that you enjoy or suffer are deter-
mined jointly by your choices and the state of the world, which may be
unknown to you at the time of the decision. For many real-time decisions,
however, this is far from the whole story. Instead, many of the decision prob-
lems that you face in real life have an inferactive or strategic nature. This means
that whatever happens depends not just on what you do but also on what
other people do. If you play chess, whether you win or lose is determined
not just by what you do but also by what your opponent does. If you invest
in stock, whether or not you make money depends not only on your choice of
i : stock but also on whether the stock goes up or down. And that is a function of
§ 4 supply and demand, which is a function of whether other people buy or sell
the stock.

The presence of strategic interaction adds a whole new layer of complex-
ity to the analysis. If you are a defense attorney, the outcome of your case
depends not only on your actions but on the actions of the prosecutor. Since
you are well aware of this, you do your best to anticipate her decisions. Thus,
your decisions will depend on what you think her decisions will be. Her deci-
. sions will reflect, in part, what she thinks you will do. So your decisions will
depend on what you think she thinks you will do. But what she thinks you
will do depends in part on what she thinks you think she will do ... and so
on. It is obvious that the correct analysis of strategic interaction is not obvious
at all.

The analysis of strategic interaction is the province of game theory. In this
chapter, I offer a brief overview of the standard theory, sometimes referred to
as analytical game theory. :

10.2 Nash equilibrium in pure strategies

The following story is a true internet legend.

Example 10.1 The makeup exam One year there were two students taking
Chemistry. They both did so well on quizzes, midterms, and labs that they
decided to leave town and go partying the weekend before the exam. They
mightily enjoyed themselves. However, much like a scene in The Hangover:
| : Part III, they overslept and did not make it back to campus in time for
the exam.
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So they called their professor to say that they had got a flat tire on
to the exam, did not have a spare, and had to wait for a long time. Th
sor thought about it for a moment, and then said that he was glad to g|
a makeup exam the next day. The two friends studied all night.

At the assigned time, the professor placed them in separate rooms,
them the exams, and asked them to begin. The two friends looked at
problem, which was a simple one about molarity and solutions and wi
5 points. “Easy!” they thought to themselves. Then, they turned the
saw the second question: “(95 points) Which tire?”

This example illustrates the interactive or strategic nature of many
problems. Here, the final grade of either friend will depend not jus
answer to the question, but on the other friend’s answer too. The twc
As whenever they give the same answer to the question and Fs whene
do not.

More formally speaking, you are playing a game whenever you fac
sion problem in which the final outcome depends not just on your actior
whatever state of the world obtains, but also on the actions of at least ¢
agent. According to this definition, the two friends are in fact playing
against each other. And this is true whether or not they think of it as
Notice that you can play a game in this sense without competing aga
other. Here, the name of the game is cooperation —and coordination. Tt
involved in games are called players. A strategy is a complete plan of ac
describes what a player will do under all possible circumstances. In th
the makeup exam, each friend has four strategies to choose from: he
“Front Left (FL),” “Front Right (FR),” “Rear Left (RL),” or “Rear Right (

Given a number of players, a set of strategies available to each ple
a set of payoffs (rewards or punishments) corresponding to each
combination of strategies, a game can be represented using a payof!
A payoff matrix is a table representing the payoffs of the players for e
sible combination of strategies. The payoff matrix of the game playe
two friends can be represented as in Table 10.1. A strategy profile is
of strategies, one for each player. (FL, RR) is a strategy profile; so is (
Thus, the payoff matrix shows the payoffs resulting from each strat
file, Of course, the payaff matrix looks much like the tables represent
strategic decision problems, except for the fact that each column rep
choice by the other player rather than a state of the world.

Table 10.1 The makeup exam

FL A F F F
FR F A F F
RL F F A F
RR F F F A
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Analytical game theory is built around the concept of an equilibrium. The
most prominent equilibrium concept is that of Nash equilibrium.

Definition 10.2 Nash equilibrium A Nash equilibrium is a strateqy profile such
that each strategy in the profile is a best response to the other strategies in the profile.

In the makeup-exam game from Example 10.1, (FL, FL) is a Nash equilibrium:
given that Player I plays FL, FL is a best response for Player II, and given that
Player II plays FL, FL is a best response for Player I. In equilibrium, given
the other players” strategies, no one player can improve his or her payoff by
unilaterally changing to another strategy. By contrast, (FL, RR) is not a Nash
equilibrium: given that Player I plays FL, Player II can do better than playing
RR, and given that Player II plays RR, Player I can do better than playing FL.
In this section, we will limit our analysis to Nash equilibria in pure strategies:
Nash equilibria in which each player simply plays one of the individual strat-
egies available to him or her (compare Section 10.3). In ali, there are four Nash
equilibria in pure strategies, one for each tire.

Example 10.3 Coffee shops You and your study partner are planning to
meet at noon at one of two coffee shops, Lucy’s Coffee and Crestwood Coffee.
Unfortunately, you failed to specify which one, and you have no way of get-
ting in touch with each other before noon. If you manage to meet, you get a
utility of 1; otherwise, you get a utility of 0. Draw the payoff matrix and find
the Nash equilibria in pure strategies.

The payoff matrix is Table 10.2. The convention is for the first number in
each cell to represent the payoff of Player I, whose strategies are listed in the
left-most column; the second number in each cell represents the payoff of
Player II, whose strategies are listed in the top row. The Nash equilibria in
pure strategies are (Lucy’s, Lucy’s) and (Crestwood, Crestwood).

Tabie 10.2 A pure coordination game

Lucy’s  Crestwood
Lucy’s 11 0,0
Crestwood . 0,0 1,1 -

The coffee-shop game is an example of a pure coordination game: a game in
which the players’ interests are perfectly aligned. The makeup-exam game,
obviously, is also a pure coordination game. In some coordination games,
however, interests fail to align perfectly. The point is typically made by means

- of the politically-incorrectly named battle of the sexes.

Example 10.4 Battle of the sexes A husband and wife must decide whether
to have dinner at the steak house or at the crab shack. All things equal, both
would rather dine together than alone, but the man (Player I) prefers the steak
house and the woman (Player II) prefers the crab shack. The man gets 2 units
of utility if both dine at the steak house, 1 if both dine at the crab shack, and
0 if they dine apart; the woman gets 2 units of utility if both dine at the crab
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shack, 1 if both dine at the steak house, and 0 if they dine apart. Draw the
payoff matrix and find the Nash equilibria in pure strategies.

The payoff matrix is Table 10.3. There are two Nash equilibria in pure strat-
egies. (Steak House, Steak House) is one. Because this is Player I's best out-
come, he cannot improve his payoff by changing strategies. Although Player I
would prefer it if both switched to Crab Shack, she cannot improve her payofi
by unilaterally deviating: if she plays Crab Shack when Player I plays Steak
House, she will end up with a payoff of 0 rather than 1. Of course (Crab Shack,
Crab Shack) is the other Nash equilibrium in pure strategies.

Table 10.3 An impure coordination game

‘ Steak House Crab Shack
Steak House 2,1 0,0
Crab Shack 0,0 1,2

Because Player I prefers the one equilibrium and Player II prefers the other,
the battle of the sexes, sometimes euphemistically called “Bach or Stravinsky,”
is an example of an impure coordination game. Here are some exercises.

Exercise 10.5 Nash equilibrium in pure strategies Find all Nash equilibria
in the games in Table 10.4, where Player I chooses between Up (U), (Middle
(M)), and Down (D) and Player II chooses between Left (L), (Middle (M)), and!
Right (R). ‘

i
i

Table 10.4 Nash equilibrium exercises

L R L R L M R

U 2,2 0,0 U 51 2,0 ) 6,2 51 4,3
D 0,0 11 D 51 1,2 M 3,6 8,4 2,1
D 2,8 9,6 3,0

(@) (b) ©

Notice that in Exercise 10.5(a), there are two Nash equilibria in pure strategies,
though one'is clearly inferior to the other from the point of view of both play-
ers. In Exercise 10.5(b), (U, L) and (D, L) are not both Nash equilibria although
they are “just as good” in the sense that they lead to the same payoffs. And in
Exercise 10.5(c), there are outcomes that are better for both players than the
Nash equilibrium.

As these games illustrate, there is no straightforward connection between
Nash equilibria and “best” outcomes for the players. As a result, it would
be a mistake to try to identify the former by searching for the latter. An even
more striking example of the general phenomenon is the prisoners’ dilemma
(Figure 10.1).

Example 10.6 Prisoners’ dilemma Two criminals are arrested on suspicion of
two separate crimes. The prosecutor has sufficient evidence to convict the two
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| Figure 10.1

on the minor charge, but not on the major one. If the two criminals cooperate
(C) with each other and stay mum, they will be convicted on the minor charge
and serve two years in jail. After separating the prisoners, the prosecutor offers
each of them a reduced sentence if they defect (D), that is, testify against each
other. If one prisoner defects but the other one cooperates, the defector goes
free whereas the cooperator serves 20 years in jail. If both defect, both get con-
victed on the major charge but (as a reward for testifying) only serve ten years.
Assume that each prisoner cares about nothing but the number of years he
himself spends in jail. What is the payoff matrix? What is the Nash equilibrium?

The payoff matrix in terms of jail sentences is Table 10.5(a); in terms of
utilities, the payoff matrix can be represented as Table 10.5(b). Let us con-
sider Player I first. If Player II cooperates, Player I has the choice between
cooperating and defecting; by defecting, he can go free instead of serving two
years in jail. If Player II defects, Player I still has the choice between cooperat-
ing and defecting; by defecting, he can serve 10 instead of 20 years in jail. In
brief, Player I is better off defecting no matter what Player II does. But the
same thing is true for Player II. Thus, there is only one Nash equilibrium. Both
defect and serve 10 years in jail.

Table 10.5 The prisoners’ dilemma

C D C D
C 2 years, 2 years 20 years, 0 years C 33 05

D O years, 20 years 10 years, 10 years D 50 11

(a) (b)

Orne way to identify the unique Nash equilibrium in the prisoners’ dilemma
is to eliminate all strictly dominated strategies. A strategy X is said to strictly
dominate another strategy Y if choosing X is better than choosing Y no matter

The suspects. lllustration by Cody Taylor !
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what the other player does. Because no rational agent will play a strictly «
inated strategy, such strategies can be eliminated from consideration 3
searching for Nash equilibria. In the prisoners’ dilemma, defection st
dominates cooperation, so cooperation can be eliminated. No rational p.
will cooperate, and both will defect.

Notice that the result holds even though both prisoners agree th
would have been better if they had both cooperated. An outcome X is sa
Pareto dominate another Y if all players weakly prefer X to Y and at least
player strictly prefers X to Y. An outcome is Pareto optimal if it is not P:
dominated by any other outcome. In the prisoners’ dilemma, the cooper:
outcome {C, C) Pareto dominates the Nash equilibrium (D, D) . In fact,
players strictly prefer the former to the latter. Still, rational players will jo
choose an outcome which is not Pareto optimal. For this reason, the pri
ers’ dilemma is sometimes presented — for example, in the film A Bem
Mind, about game theory inventor and Nobel laureate John Nash - as reft
Adam Smith’s insight that the rational pursuit of individual self-interest |
to socially desirable outcomes.

Many real-world interactions have features that are reminiscent of
prisoners” dilemma. Arms races are classic examples. Consider the nuc
buildup in India and Pakistan. Whether or not India has nuclear a
Pakistan wants them. If India has them, Pakistan needs them to preserve
balance of power; if India does not have them, Pakistan wants them to gei
upper hand. For the same reason, India wants nuclear arms whether or
Pakistan has them. Thus, both countries acquire nuclear arms, neither cou
has the upper hand, and both countries are worse off than if neither had tt
Overfishing, deforestation, pollution, and many other phenomena are o
classic examples. The idea is that no matter what other players do, each pl
has an incentive to fish, cut down forests, and pollute, but, if everyone d
everyone is worse off than if nobody had acted.

A number of different solutions might occur to you. What if the two I
oners, before committing the crime, got together and promised to coope
in the event that they are caught? Surely, you might think, a gentlem
agreement and a handshake would do the trick. The solution fails, h
ever, because whatever verbal agreement the prisoners might have ente
into before getting caught will not be binding. At the end of the day, e
has to make a choice in isolation, defection strictly dominates cooperat
and a rational agent has no choice but to defect. “Talk is cheap,” the say
goes, which is why game theorists refer to non-binding verbal agreement
cheap talk.

What if the game could be repeated? Repetition, you might think, shc
afford a prisoner the opportunity to punish defection by defecting. But s
pose the two prisoners play ten prisoners’ dilemma games against each ot
To find the equilibrium in the repeated game, we start at the end and
procedure called backward induction. In the last round, no rational prisc
will cooperate, because his opponent has no way to retaliate against de
tion; so in round ten, both prisoners will defect. In the 'next to last roun
rational prisoner already knows that his opponent will defect in round
which means that it does not matter whether he cooperates or defects; s
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round nine, both prisoners will defect. The same thing is true for round eight,
round seven, and so on. In this way, the prospect of rational cooperation in
the repeated prisoners’ dilemma unravels from the end. Repetition does not
necessarily solve the problem.

Cooperation can be sustained if there is no last round, that is, if the game is
repeated indefinitely. In the indefinitely repeated prisoners’ dilemma, there is
a Nash equilibrium in which both prisoners cooperate throughout but are pre-
pared to punish defection by defecting. The cooperative solution presupposes
that the players do not discount the future too much: if they do, no amount
of repetition will save the prisoners. And there is no guarantee that rational
individuals will play that particular equilibrium. In fact, there is an infinite
number of equilibria in the indefinitely repeated prisoners’ dilemma, and in
one of those equilibria prisoners always defect. In brief, indefinite repetition
upholds the prospect of rational cooperation in the prisoners’ dilemma, but
cooperation is far from guaranteed.

There is only one sure-fire way for rational agents to avoid defection, and
it is to make sure they are not playing a prisoners’ dilemma at all. Suppose
that the two criminals, before committing their crimes, go to the local con-
tract killer and instruct him to kill anyone who defects in the event that he

is caught. If death at the hands of a contract killer is associat

ed with a utility
of

—%, the payoff matrix of the two prisoners will now look like Table 10.6.
Here, cooperation strictly dominates defection for both players and (C, C) is
the unique Nash equilibrium. You might think that it would never be in a per-
son’s interest to ask to be killed by a contract killer, no matter what the condi-
tions; yet, by proceeding in this way, the prisoners can guarantee themselves
a much better payoff than if they had not. But notice that cooperation is the

uniquely rational strategy only because the two prisoners are no longer play-
ing a prisoners’ dilemma.

Table 10.6 The modified prisoners’ dilemma

C D
C 3,3 0,~o0
D -0, —00,—00

Example 10.7 The Leviathan The seventeenth-century political philosopher
Thomas Hobbes offered a justification of political authority by imagining what
life would be like without it. In one of the most famous lines in the history of
Western philosophy, Hobbes described this “state of nature” as follows:

[During] the time men live without a common power to keep them all in
awe, they are in that condition which is called war, and such a war as is
of every man against every man ... In such condition there is ... continual

fear and danger of violent death, and the life of man, solitary, poor, nasty,
brutish, and short.

The solution, according to Hobbes, is a covenant according to which people
give up their right to kill and maim other people in exchange for the right
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: SR The Leviathan. Detail of the frontispiece from the 1651 edition

not to be killed and maimed, and which at the same time establishes an ov
whelming power — a Leviathan — to ensure that people adhere to the term:
the covenant (see Figure 10.2).

Game theory offers a new way to interpret the nature of this “war of
against all.” These days, many people think of Hobbes’s story as a vi
description of a scenario in which people are forced to play prisoners’ dil¢
mas against each other, and in which the pursuit of rational self-interest the
fore leads to the worst possible outcome for all involved. The-Leviathar
Hobbes's story serves the same function as the contract killer in the scen:
above: by holding people to their promises, he ensures that rational s

interest coincides with social desirability. |

i

10.3 Nash equilibrium in mixed strategies

Some games have no Nash equilibria in pure strategies. But that does
mean that they do not have Nash equilibria.

Example 10.8 Coffee shops, cont. Suppose that you still have to go to
of the two coffee shops in Example 10.3 and that your ex has to also. You
not want to run into your ex, but your ex wants to run into you. What king
game would you be playing against each other?
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If a player gets a utility of 1 whenever his or her goal is attained and 0 oth-
erwise, the payoff matrix is Table 10.7.

Table 10.7 A pure coordination game

Lucy’s Crestwood
Lucy’s 1,0 0,1
Crestwood 0,1 1,0

This game has no Nash equilibria in pure strategies. If you go to Lucy’s, your
ex will want to go there too, but then you want to go to Crestwood, in which
case your ex wants to do so too. This coffee shop game, by the way, has the
same payoff structure as a game called matching pennies. When two people
play matching pennies, each flips a penny. If both coins come up heads, or if
both coins come up tails, Player I wins; otherwise, Player II wins. This also
happens to be an example of a zero-sum game, a game in which whenever
one player wins, another player loses.

The game does, however, have a Nash equilibrium in mixed strategies.
Suppose that you figure out where to go by flipping a coin, and that your
ex does the same. Given that you have a 50 percent chance of ending up at
Lucy’s and a 50 percent chance of ending up at Crestwood, your ex is indiffer-
ent between Lucy’s and Crestwood and can do no better than flipping a coin.
And given that your ex has a 50 percent chance of ending up at Lucy’s and
a 50 percent chance of ending up at Crestwood, you are indifferent between
Lucy’s and Crestwood and can do no better than flipping a coin. Hence, the
two of you are in a Nash equilibrium, though you are playing mixed rather
than pure strategies.

In a game like this, the mixed-strategy equilibrium is easy to find. In other
games it can be more tricky. Consider the battle of the sexes (Example 10.4). In
order to find a mixed-strategy equilibrium in a game like this, there is one crit-
ical insight: in order for players to rationally play a mixed strategy, they must
be indifferent between the pure strategies they are mixing. Why? If a player
strictly preferred one over the other, the only rational thing to do would be
to play the preferred strategy with probability one. Thus, yau can find the
mixed-strategy equilibrium in a game by setting up equations and solving for
the probabilities with which the players play different strategies.

Example 10.9 Battle of the sexes, cont. In order to find the mixed-strategy
equilibrium in the battle of the sexes (Table 10.8), let us assume that Player I
plays U with probability p and D with probability (1 — p) and that Player II
plays L with probability g and R with probability (1 — g).

Consider Player I first. In order to play a mixed strategy, he must be indif-
ferent between U and D, meaning that u(U) = u(D). The utility of playing U
will depend on what Player II does, that is, on what g is. When playing U,
Player I has a probability of g of getting 2 utiles and a probability of (1 — g)
of getting 0. Consequently, u(U) = g %2 + (1 — g) * 0 = 29. When playing D,
Player I has a probability of g of getting 0 utiles and a probability of (1 — g) of

229
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getting 1. Thus, u(D) = g0 + (1 — 9)*1=1 - g.So u(U) = u(D) entails th
2q =1 - g, meaning that g = 1/3.

Next, consider Player II. In order to play a mixed strategy, she needs tot
indifferent between L and R, meaning that #(L) = u(R). Now u(L) = p*1
(I-p)*0=pandu(®R) =p=*0+ (1 —p)*2=2-2p.Sou(L) = u(R) entai
thatp = 2 — 2p, meaning that p = 2/3.

Hence, there is a Nash equilibrium in mixed strategies in which Player
plays U with probability 2/3 and Player IT plays L with probability 1/3. In th
mixed-strategy equilibrium, Player I gets payoff u(U) = u(D) =29 =2/3 an
Player II gets payoff u(L) = u(R) = p = 2/3.

Table 10.8  An impure coordination game

L R
8] 2,1 0,0
D 0,0 1,2

As this example shows, games with pure-strategy equilibria may also have
mixed equilibria.

Exercise 10.10 Mixed-strategy equilibrium Find the mixed-strategy Nash
equilibria in Tables 10.4(a) and (b).

In the mixed-strategy equilibrium in (a), notice that Player I is more likely to
play D than U and that Player II is more likely to play R than L. This might seem
strange, since you would perhaps expect the players to be more likely to play
the strategy associated with the more desirable equilibrium (U, L). But assume:
for a proof by contradiction that the two players are in a mixed-strategy equilib-
rium in which Player I plays U and Player II plays L with some high probability.
If so, Player I would strictly prefer U to D and Player IT would strictly prefer L
to R. Thus, the two players would not be in equilibrium at all, contrary to the
initial assumption. For the two players to want to mix, they must be indiffer-
ent between the two pure strategies, and this can happen only when Player I is
more likely fo play D than U and-when Player II is more likely to play R than L.

Notice also that the probability p with which Player I plays U is a func-
tion not of Player I's own payoffs, but of Player II's payoffs. This might seem
equally counterintuitive. Yet, it follows from the fact that p must be selected
in such a manner as to make Player I indifferent between her pure strategies.
Similarly, the probability g with which Player II plays L is determined not by
her payoffs, but by her opponent Player I's payoffs. This is a fascinating fea-
ture of Nash equilibria in mixed strategies.

Exercise 10.11 Pure vs. mixed equilibria Find all Nash equilibria (in pure
and mixed strategies) in the games depicted in Table 10.9.

Although a mixed-strategy equilibrium may at first blush seem like an artifi-
cial construct of mainly academic interest, mixed strategies are important and
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common in a wide variety of strategic interactions. Even if you are a tennis
player with a killer cross-court shot, it would be unwise to hit the cross-court
shot every time, or your opponent will learn to expect it. Every so often, you
must hit the ball down the line. In games like these, in order to keep your
opponent guessing, you must mix it up a bit. This analysis shows that it is not
a mistake, but necessary, every so often to hit your weaker shot.

Table 10.9 Mixed Nash equilibrium exercises

L R L R L R
U 52 11 U 41 2,0 8) 1,1 0,0
D 11 25 D 51 12 D 0,0 0,0

(@) (b) (©

Example 10.12 Spousonomics According to the authors of the book
Spousonomics: “Economics is the surest route to marital bliss” because “it offers
dispassionate, logical solutions to what can often seem like thorny, illogical,
and highly emotional domestic disputes.” Suppose that you are stuck in an
equilibrium where you do the dishes, make the bed, and empty the cat litter
while your spouse sits back and relaxes. Spousonomics, apparently, teaches
that you can turn your spouse into an acceptable (if not ideal) partner by play-
ing a mixed strategy, by sometimes doing the laundry, sometimes not, some-
times making the bed, sometimes not, and so on.

Exercise 10.13 Rock-paper-scissors

(@) Draw the payoff matrix for the game rock-paper-scissors. Suppose that a
win gives you 1 utile, a tie 0, and a loss —1.

(b) What is the unique Nash equilibrium in this game?

We already know that not all games have Nash equilibria in pure strategies.
But now that we have access to the concept of a Nash equilibrium in mixed

strategies it is possible to prove a famous theorem originally due to John Nash.
Simplified and expressed in words:

Theorem 10.14 Nash’s theorem Every finite game — that is, every game in
which all players have a finite number of pure strategies — has a Nash equilibrium.

~ Proof.  Omitted. O

Given this theorem, the search for Nash equilibria is not futile. As long as the
number of pure strategies available to each player is finite — and whether this
condition is satisfied is fairly easy to determine — we know that the game has
atleast one Nash equilibrium in pure or mixed strategies. This is neat.

Example 10.15 Chess Chess is a finite game. We know this because every
player has a finite number of moves to choose from at any point in the game
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and because every game ends after a finite number of moves. Because it
finite game, Nash’s theorem establishes that it has an equilibrium.

" This suggests that chess should be uninteresting, at least when played

experienced players. Assuming Player I plays the equilibrium strategy, Pla
I can do no better than playing the equilibrium strategy, and vice versa. Tt
we should expect experienced players to implement the equilibrium str:
gies every time, and the outcome to be familiar and predictable.

Yet Nash'’s theorem only establishes the existence of an equilibrium; it d
not reveal what the equilibrium strategies are. As of yet, no computer is pc
erful enough to figure out what they are. And even if we knew what the str:
gies were, they might be too complex for human beings to implement. Th
chess is likely to remain interesting for a good long time.

Before we move on, two more exercises.

Exercise 10.16 Chicken The game of chicken was popularized in the 1
film Rebel Without a Cause, starring James Dean. The game is played by two p
ple who drive cars straight at each other at high speed; the person who swenr
first is called “chicken” and becomes an object of contempt. In this game, |
British philosopher Bertrand Russell saw an analogy with Cold War policy:

Since the nuclear stalemate became apparent, the Governments of E
and West have adopted the policy which [US Secretary of State] Mr Dul
calls “brinkmanship”. This is a policy adapted from a sport which
am told, is practised by some youthful degenerates. This sport is call
“Chicken!” ... As played by irresponsible boys, this game is consider
decadent and immoral, though only the lives of the players are risked. E
when the game is played by eminent statesmen, who risk not only th
own lives but those of many hundreds of millions of human beings, it
thought on both sides that the statesmen on one side are displaying a hi,
degree of wisdom and courage, and only the statesmen on the other si
are reprehensible. This, of course, is absurd. ‘

Imagine that each player has the choice between swerving (S) and not sweri‘
ing (=5);and that the payoff structure is that of Table 10.10. Find all Na
equilibria in this game.

Table 10.10 Chicken

S -S
S 3,3 2,5
=5 52 1,1

In abranch of game theory called evolutionary game theory, this game figur
prominently under the heading of hawk & dove. Hawks are willing to fight
the death whereas doves easily give up. The best possible outcome for you
when you are a hawk and your opponent is a dove, the second best outcon
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is when both of you are doves, the third best is when you are a dove and your
opponent is a hawk, and the worst possible outcome is when both of you are
hawks. If doves “swerve” and hawks do not, the payoff structure of hawk &
dove is the same as that of chicken. In evolutionary game theory, the mixed-
strategy equilibrium is interpreted as describing a population in which hawks
and doves coexist in given proportions —just as they do in the real world.

Exercise 10.17 The stag hunt This game is due to Jean-Jacques Rousseau,
the eighteenth-century French philosopher. Rousseau describes a scenario in
which two individuals go hunting. The two can hunt hare or deer but not
both. Anyone can catch a hare by himself, but the only way to bag a deer is
for both hunters to pursue the deer. A deer is much more valuable than a hare.
The stag hunt, which is thought to provide an important parable for social
cooperation, is usually represented as in Table 10.11. What are the Nash equi-
libria (in pure and mixed strategies) of this game?

Table 10.11 The stag hunt

D H
D . 3,3 0,1
H 1,0 1,1

Notice how superficially subtle differences in the payoff structure between the
prisoners” dilemma (Table 10.5(b)), chicken (Table 10.10), and the stag hunt
(Table 10.11) lead to radically different results.

10.4 Equilibrium refinements

The concept of a Nash equilibrium is associated with a number of controver-
sial results. In this section, we consider two alternative equilibrium concepts,
designed to deal with supposedly problematic cases.

Example 10.18 Trembling-hand perfection Let us return to Table 10.9(c). As
you know, (U, L) is a Nash equilibrium. (D, L) is not an eqﬁilibrium, since
Player T can improve his payoff by playing U instead of D, and neither is
(U, R). But consider (D, R). If Player II plays R, Player I can do no better than
playing D; if Player I plays D, Player I can do no better than playing R. Thus,
(D, R) is a Nash equilibrium. There are no mixed equilibria. No matter what
Player II does, Player I will never be indifferent between U and D, and no
matter what Player I does, Player II will never be indifferent between L and R.

There is nothing wrong with the analysis here, but there is something odd
about the second equilibrium (D, R). A strategy X is said to weakly dominate
another strategy Y if choosing X is no worse than choosing Y no matter what
the other player does, and choosing X is better than choosing Y for at least one
strategy available to the other player. In Example 10.18, U weakly dominates
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D and L weakly dominates R. Thus, there seems to be no reason why ratic
individuals would ever play the second equilibrium (D, R). And the prob
is not that (1,1) Pareto dominates (0,0) (see Section 10.2).

The concept of a trembling-hand-perfect equilibrium was designec
handle this kind of situation.

Definition 10.19 Trembling-hand-perfect equilibrium A trembling-han
perfect equilibrium is a Nash equilibrium that remains a best response for eac
player even when others have some minuscule probability of trembling, that i
accidentally playing an out-of-equilibrium strategy.

In Table 10.9(c), (U, L) is a trembling-hand-perfect equilibrium: even if th
is a minuscule probability € > 0 that Player II plays R, she still plays L w
probability (1 — €) and U remains a best response for Player I. (And simile
for the other player.) By contrast, (D, R) is not trembling-hand perfect. If th
is a minuscule probability e > 0 that Player II plays L, no matter how small
is a strictly preferred strategy for Player L

Exercise 10.20 Battle of the sexes, cont. Are the two pure-strategy equi
ria in the battle of the sexes (Table 10.8) trembling-hand perfect?

Trembling-hand-perfect equilibrium is a refinement of Nash equilibrium. T
means that every trembling-hand-perfect equilibrium is a Nash equilibriu
but not every Nash equilibrium is trembling-hand perfect.

Exercise 10.21 Trembling-hand perfection Find (a) all Nash equilibria
pure strategies in Table 10.12 and (b) identify which of them are tremblir
hand perfect.

Table 10.12 Trembling-hand perfection, cont.

L M R

U 1,4 0,0 0,0

M 0,0 41 0,0

- D 0,0 T 00 0,0

Substituting the concept of trembling-hand-perfect equilibrium for the ¢
cept of Nash equilibrium would eliminate some problematic implications
the Nash-equilibrium concept. The concept of trembling-hand equilibrium
however, insufficient to deal with all problematic cases.

Example 10.22 Credible versus non-credible threats Consider a game w
two stages. In the first stage, Player I plays U or D. If Player I plays D, bq
players get a payoff of 2. If Player I plays U, it is Player II's turn. In the seco
stage, Player II plays L or R; if Player II plays L, Player I gets 5 and Player|
gets 1. If Player Il plays R, both get 0. What are the Nash equilibria of this gam
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The game can be represented as in Table 10.13. There are two Nash equi-
libria: (U, L) and (D, R).

Table 10.13 Subgame perfection

L R
U 51 0,0
D 22 2,2

Yet there is something odd about the second of the two equilibria. The only
thing preventing Player I from playing U is the threat of Player II playing R.
But suppose that Player I did play U. Then, Player Il would have the choice of
playing L (for a payoff of 1) and R (for a payoff of 0). In the second stage, it is
not in Player II's interest to play R. So while it is perfectly possible for Player
IT to threaten to play R if Player I plays U, she would have no interest in carry-
ing out the threat. Knowing this, it appears that Player I should just go ahead
and play U. Game theorists say that the problem is that Player II's threat is
not credible. Many people think that it is problematic that a Nash equilibrium
might involve a non-credible threat. And the problem is not that the Nash
equilibrium is not trembling-hand perfect.

Games with multiple stages are called sequential. To analyze such
games, it is often useful to use a tree-like representation called the extensive
form. The game from Example 10.22 can, for example, be represented as in
Figure 10.3. This representation affords another way to spell out the prob-
lem. Consider that part of the game which starts at the node where Player
Il moves (see the shaded area in the figure). We refer to it as a subgame of
the original game. In the subgame, Player II has two strategies (L and R) and
there is only one Nash equilibrium: to play L (for a payoff of 1) rather than R
(for a payoff of 0). Yet the Nash equilibrium in the game requires Player II to
play R in the subgame. One way to spell out the problem, then, is to say that

235
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the Nash equilibrium of the game requires Player II to play a strategy that is
not a Nash equilibrium in the subgame.

Consistent with this analysis, game theorists have proposed another equi-
librium concept: subgame-perfect equilibrium. As suggested in the previous
paragraph, a subgame of a game is any part of that game which in itself con-
stitutes a game. A game is always its own subgame, but in this case there is a
proper subgame starting at the node where Player II moves.

Definition 10.23 Subgame-perfect equilibrium A subgame-perfect equi-
librium is a strategy profile that constitutes a Nash equilibrium in each subgame.

Like trembling-hand-perfect equilibrium, subgame-perfect equilibrium is a
refinement of Nash equilibrium: all subgame-perfect equilibria are Nash equi-
libria, but not all Nash equilibria are subgame perfect.

One way to find subgame-perfect equilibria is to start at the end and
use backward induction. Backward induction would tell you to start with
the last subgame, that is, at the node where Player II moves (the shaded
area of the figure). Since L. would lead to a payoff of 1 and R would lead to
a payoff of 0, L is the unique Nash equilibrium strategy. So, in subgame-
perfect equilibrium, Player II will play L. Given that Player II will play L,
what will Player I do at the first node? Player I has the choice between
playing U for a payoff of 3, and playing D for a payoff of 2. Thus, Player I
will play U. In brief, there is only one subgame-perfect equilibrium in this
game, and it is (U, L).

Example 10.24 MAD Mutually assured destruction (MAD) is a military
doctrine according to which two superpowers (such as the US and the USSR)
can maintain peace by threatening to annihilate the human race in the event
of an enemy attack. Suppose that the US moves first in a game like that in
Figure 10.3. The US can launch an attack (U) or not launch an attack (D). If it
launches an attack, the USSR can refrain from retaliating (L) or annihilate the
human race (R). Given the payoff structure of the game in the figure, (D, R)
is a Nash equilibrium. The doctrine is flawed, however, in that the threatis |
not credible: the MAD Nash equilibrium presupposes that USSR forces are
willing to annihilate the human race in the event of a US attack, which would §
obviously not be in their interest. Thus, the MAD Nash equilibrium is not }
subgame perfect. |
In Stanley Kubrick’s 1963 film Dr Strangelove, the USSR tries to circum- §
vent the problem by building a doomsday machine: a machine that in the §
event of an enemy attack (or when tampered with) automatically launches an §
attack powerful enough to annihilate the human race. Such a machine would
solve the strategic problem, because it guarantees retaliation to enemy attack :
and therefore makes the threat credible. As the film illustrates, however, such
machines are associated with other problems. To begin with, you must not §
forget to tell your enemy that you have one. 3

Exercise 10.25 Subgame perfection Use backward induction to find the
unique subgame-perfect equilibrium in the game in Figure 10.4. Recall thata
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(3,1) (1,3) 2,1 (0,0)

HCTCRUEN Subgame perfection exercise

strategy is a complete plan of action, which means that a strategy for Player
IT will have the form “L at the first node and L at the second (LL),” “R at the
first node and L at the second (RL),” and the like. In this game, then, whereas
Player I only has two strategies to choose from, Player II has four.

Finally, one more exercise:

Exercise 10.26 The centipede game The centipede game has four stages
(see Figure 10.5). At each stage, a player can Take, thereby ending the game,

or Pass, thereby increasing the total payoff and allowing the other player to
move.

(a) Use backward induction to find the unique subgame-perfect equilibrium.
(b) Would the outcome of the game differ if it had 1000 stages instead of four?

(5,0)

(1,0) (0.2) (3.0 (0.4) ) .

Figure LW The centipede game

10.5 Discussion

Like the theories we came across earlier in this book, analytical game theory
admits of descriptive and normative interpretations. According to the descrip-
tive interpretation, game theory captures the manner in which people behave
when they engage in strategic interactions. In this view, game theory pre-
dicts that people will jointly choose an equilibrium strategy profile. Specific
predictions, of course, will depend not only on the game played, but on the
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equilibrium concept that is employed. According to the normative interpr

. tion, game theory describes how rational agents should behave when tl

engage in strategic interaction. In this view, game theory says that play
should jointly choose an equilibrium strategy profile. Again, the spec
advice offered by the theory will depend on the game played and the equi
rium concept employed.

One thing to notice is that games do not necessarily have a unique ec
librium. And analytical game theory in itself does not contain the resour
required to identify which equilibrium people will or should play. While
theory can be interpreted as predicting that the outcome of strategic ini
action will or should be a Nash equilibrium, this is only to say that so
Nash equilibrium will or should obtain. In this sense, then, the theory is in
terminate. And because some games (like the indefinitely repeated pris«
ers” dilemma) have an infinite number of equilibria, the theory is radica
indeterminate.

If we want determinate predictions, we must augment the theory w
additional resources. The most famous such effort is the theory of fo
points, due to 2005 Nobel laureate Thomas C. Schelling. According to
theory, some equilibria tend to stand out in the minds of the players. Schelli
predicts that people will frequently succeed in selecting such equilibria. T
precise feature of an equilibrium that makes it stand out in the minds of t
players is far from obvious.

Finding the key ... may depend on imagination more than on logic; it m
depend on analogy, precedent, accidental arrangement, symmetry, a
thetic or geometric configuration, casuistic reasoning, and who the parti
are and what they know about each other.

This theory can explain why people favor (U, L) over (D, R) in Table 10. 9(
When there is a unique Pareto-optimal outcome that also happens to be
Nash equilibrium, it seems plausible to assume that people will use Pare
optimality as a focal point. If so, we might be able to explain observed beha
ior without making the transition to trembling-hand-perfect equilibrium.

In the next chapter, we will explore behavioral economists’ challenge
analytical game theory.

(S
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