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Abstract

We investigate the relation between judgments of probability and preferences between bets. A series of
experiments provides support for the competence hypothesis that people prefer betting on their own judgment
over an equiprobable chance event when they consider themselves knowledgeable, but not otherwise. They
even pay a significant premium to bet on their judgments. These data cannot be explained by aversion to
ambiguity, because judgmental probabilities are more ambiguous than chance events. We interpret the results in
terms of the attribution of credit and blame. The possibility of inferring beliefs from preferences is questioned. !

The uncertainty we encounter in the world is not readily quantified. We may feel that
our favorite football team has a good chance to win the championship match, that the
price of gold will probably go up, and that the incumbent mayor is unlikely to be re-
elected, but we are normally reluctant to assign numerical probabilities to these events.
However, to facilitate communication and enhance the analysis of choice, it is often
desirable to quantify uncertainty. The most common procedure for quantifying uncer-
tainty involves expressing belief in the language of chance. When we say that the proba-
bility of an uncertain event is 30%, for example, we express the belief that this event is as
probable as the drawing of a red ball from a box that contains 30 red and 70 green balls.
An alternative procedure for measuring subjective probability seeks to infer the degree
of belief from preference via expected utility theory. This approach, pioneered by Ram-
sey (1931) and further developed by Savage (1954) and by Anscombe and Aumann
(1963), derives subjective probability from preferences between bets. Specifically, the
subjective probability of an uncertain event E is said to be p if the decision maker is
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indifferent between the prospect of receiving $ x if E occurs (and nothing otherwise) and
the prospect of receiving $ x if a red ball is drawn from a box that contains a proportion p
of red balls.

The Ramsey scheme for measuring belief and the theory on which it is based were
challenged by Daniel Ellsberg (1961; see also Fellner, 1961) who constructed a compel-
ling demonstration of what has come to be called an ambiguity effect, although the term
vagueness may be more appropriate. The simplest demonstration of this effect involves
two boxes: one contains 50 red balls and 50 green balls, whereas the second contains 100
red and green balls in unknown proportion. You draw a ball blindly from a box and guess
its color. If your guess is correct, you win $20; otherwise you get nothing. On which box
would you rather bet? Ellsberg argued that people prefer to bet on the 50/50 box rather
than on the box with the unknown composition, even though they have no color prefer-
ences and so are indifferent between betting on red or on green in either box. This
pattern of preferences, which was later confirmed in many experiments, violates the
additivity of subjective probability because it implies that the sum of the probabilities of
red and of green is higher in the 50/50 box than in the unknown box.

Ellsberg’s work has generated a great deal of interest for two reasons. First, it provides
an instructive counter example to (subjective) expected utility theory within the context
of games of chance. Second, it suggests a general hypothesis that people prefer to bet on
clear rather than on vague events, at least for moderate and high probability. For small
probability, Ellsberg suggested, people may prefer vagueness to clarity. These observa-
tions present a serious problem for expected utility theory and other models of risky
choice because, with the notable exception of games of chance, most decisions in the real
world depend on uncertain events whose probabilities cannot be precisely assessed. If
people’s choices depend not only on the degree of uncertainty but also on the precision
with which it can be assessed, then the applicability of the standard models of risky
choice is severely limited. Indeed, several authors have extended the standard theory by
invoking nonadditive measures of belief (e.g., Fishburn, 1988; Schmeidler, 1989) or
second-order probability distributions (e.g., Gérdenfors and Sahlin, 1982; Skyrm, 1980)
in order to account for the effect of ambiguity. The normative status of these models is a
subject of lively debate. Several authors, notably Ellsberg (1963), maintain that aversion
to ambiguity can be justified on normative grounds, although Raiffa (1961) has shown
that it leads to incoherence.

Ellsberg’s example, and most of the subsequent experimental research on the re-
sponse to ambiguity or vagueness, were confined to chance processes, such as drawing a
ball from a box, or problems in which the decision maker is provided with a probability
estimate. The potential significance of ambiguity, however, stems from its relevance to
the evaluation of evidence in the real world. Is ambiguity aversion limited to games of
chance and stated probabilities, or does it also hold for judgmental probabilities? We
found no answer to this question in the literature, but there is evidence that casts some
doubt on the generality of ambiguity aversion.

For example, Budescu, Weinberg, and Wallsten (1988) compared the cash equivalents
given by subjects for gambles whose probabilities were expressed numerically, graphi-
cally, or verbally. In the graphical display, probabilities were presented as the shaded
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area of a circle. In the verbal form, probabilities were described by expressions such as
“very likely” or “highly improbable.” Because the verbal and the graphical forms are
more ambiguous than the numerical form, ambiguity aversion implies a preference for
the numerical display. This prediction was not confirmed. Subjects priced the gambles
roughly the same in all three displays. In a different experimental paradigm, Cohen and
Hansel (1959) and Howell (1971) investigated subjects’ choices between compound
gambles involving both skill and chance components. For example, in the latter experi-
ment the subject had to hit a target with a dart (where the subjects’s hit rate equaled
75%) as well as spin a roulette wheel so that it would land on a marked section compos-
ing 40% of the area. Success involves a 75% skill component and 40% chance compo-
nent with an overall probability of winning of .75 x .4 = .3. Howell varied the skill and
chance components of the gambles, holding the overall probability of winning constant.
Because the chance level was known to the subject whereas the skill level was not,
ambiguity aversion implies that subjects would shift as much uncertainty as possible to
the chance component of the gamble. In contrast, 87% of the choices reflect a prefer-
ence for skill over chance. Cohen and Hansel (1959) obtained essentially the same result.

1. The competence hypothesis

The preceding observations suggest that the aversion to ambiguity observed in a chance
setup (involving aleatory uncertainty) does not readily extend to judgmental problems
(involving espistemic uncertainty). In this article, we investigate an alternative account of
uncertainty preferences, called the competence hypothesis, which applies to both chance
and evidential problems. We submit that the willingness to bet on an uncertain event
depends not only on the estimated likelihood of that event and the precision of that
estimate; it also depends on one’s general knowledge or understanding of the relevant
context. More specifically, we propose that—holding judged probability constant—peo-
ple prefer to bet in a context where they consider themselves knowledgeable or compe-
tent than in a context where they feel ignorant or uninformed. We assume that our
feeling of competence! in a given context is determined by what we know relative to what
can be known. Thus, it is enhanced by general knowledge, familiarity, and experience,
and is diminished, for example, by calling attention to relevant information that is not
available to the decision maker, especially if it is available to others.

There are both cognitive and motivational explanations for the competence hypothe-
sis. People may have learned from lifelong experience that they generally do better in
situations they understand than in situations where they have less knowledge. This ex-
pectation may carry over to situations where the chances of winning are no longer higher
in the familiar than in the unfamiliar context. Perhaps the major reason for the compe-
tence hypothesis is motivational rather than cognitive. We propose that the conse-
quences of each bet include, besides the monetary payoffs, the credit or blame associated
with the outcome. Psychic payoffs of satisfaction or embarrassment can result from
self-evaluation or from an evaluation by others. In either case, the credit and the blame
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associated with an outcome depend, we suggest, on the attributions for success and
failure. In the domain of chance, both success and failure are attributed primarily to luck.
The situation is different when a person bets on his or her judgment. If the decision
maker has limited understanding of the problem at hand, failure will be attributed to
ignorance, whereas success is likely to be attributed to chance. In contrast, if the decision
maker is an “expert,” success is attributable to knowledge, whereas failure can some-
times be attributed to chance.

We do not wish to deny that in situations where experts are supposed to know all the
facts, they are probably more embarrassed by failure than are novices. However, in
situations that call for an educated guess, experts are sometimes less vulnerable than
novices because they can better justify their bets, even if they do not win. In betting on the
winner of a football game, for example, people who consider themselves experts can
claim credit for a correct prediction and treat an incorrect prediction as.an upset. People
who do not know much about football, on the other hand, cannot claim much credit for a
correct prediction (because they are guessing), and they are exposed to blame for an
incorrect prediction (because they are ignorant).

Competence or expertise, therefore, helps people take credit when they succeed and
sometimes provides protection against blame when they fail. Ignorance or incompe-
tence, on the other hand, prevents people from taking credit for success and exposes
them to blame in case of failure. As a consequence, we propose, the balance of credit to
blame is most favorable for bets in one’s area of expertise, intermediate for chance
events, and least favorable for bets in an area where one has only limited knowledge.
This account provides an explanation of the competence hypothesis in terms of the
asymmetry of credit and blame induced by knowledge or competence.

The preceding analysis readily applies to Ellsberg’s example. People do not like to bet
on the unknown box, we suggest, because there is information, namely the propartion.of
red and green balls in the box, that is knowable in principie but unknown to them. The
presence of such data makes people feel less knowledgeable and less competent and
reduces the attractiveness of the corresponding bet. A closely related interpretation of
Elisberg’s example has been offered by Frisch and Baron (1988). The competence hy-
pothesis is also consistent with the finding of Curley, Yates, and Abrams (1986) that the
aversion to ambiguity is enhanced by anticipation that the contentsof the unknown box
will be shown to others.

Essentially the same analysis applies to the preference for betting on the future rather
than on the past. Rothbart and Snyder (1970) asked subjects to roll a die and bet on the
outcome either before the die was rolled or after the die was rolled but before the result
was revealed. The subjects who predicted the outcome before the die was rolled ex-
pressed greater confidence in their guesses than the subjects who predicted the outcome
after the die roll (“postdiction”). The former group also bet significantly more money
than the latter group. The authors attributed this phenomenon ta magical thinking or the
illusion of control, namely the belief that one can exercise some control over the outcome
before, but not after, the roll of the die. However, the preference to bet on future rather
than past events is observed even when the illusion of control does not provide a plausi-
ble explanation, as illustrated by the following problem in which subjects were presented
with a choice between the two bets:
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1. Astockis selected at random from the Wall Street Journal. You guess whether it will go
up or down tomorrow. If you're right, you win $5.

2. A stock is selected at random from the Wall Street Journal. You guess whether it went
up or down yesterday. You cannot check the paper. If you’re right, you win $5.

Sixty-seven percent of the subjects (N = 184) preferred to bet on tomorrow’s closing
price. (Ten percent of the participants, selected at random, actually played their chosen
bet.) Because the past, unlike the future, is knowable in principle, but not to them,
subjects prefer the future bet where their relative ignorance is lower. Similarly, Brun and
Teigen (1990) observed that subjects preferred to guess the result of a die roll, the sex of
a child, or the outcome of a soccer game before the event rather than afterward. Most of
the subjects found guessing before the event more “satisfactory if right” and less “un-
comfortable if wrong.” In prediction, only the future can prove you wrong; in postdiction,
you could be wrong right now. The same argument applies to Ellsberg’s problem. In the
50/50 box, a guess could turn out to be wrong only after drawing the ball. In the unknown
box, on the other hand, the guess may turn out to be mistaken even before the drawing of
the ball—if it turns out that the majority of balls in the box are of the opposite color. It is
noteworthy that the preference to bet on future rather than on past events cannot be
explained in terms of ambiguity because, in these problems, the future is as ambiguous as
the past.

Simple chance events, such as drawing a ball from a box with a known composition
involve no ambiguity; the chances of winning are known precisely. If betting preferences
between equiprobable events are determined by ambiguity, people should prefer to bet
on chance over their own vague judgments (at least for moderate and high probability).
In contrast, the attributional analysis described above implies that people will prefer
betting on their judgment over a matched chance event when they feel knowledgeable
and competent, but not otherwise. This prediction is confirmed by the finding that peo-
ple prefer betting on their skill rather than on chance. It is also consistent with the
observation of March and Shapira (1987) that many top managers, who consistently bet
on highly uncertain business propositions, resist the analogy between business decisions
and games of chance. )

We have argued that the present attributional analysis can account for the available
evidence on uncertainty preferences, whether or not they involve ambiguity. These in-
clude 1) the preference for betting on the known rather than on the unknown box in
Ellsberg’s problem, 2) the preference to bet on future rather than on past events, and 3)
the preference for betting on skill rather than on chance. Furthermore, the competence
hypothesis implies a choice-judgment discrepancy, namely a preference to bet on A rather
than on B even though B is judged to be at least as probable as A. In the following series
of experiments, we test the competence hypothesis and investigate the choice-judgment
discrepancy. In experiment 1 we offer people the choice between betting on their judged
probabilities for general knowledge items or on a matched chance lottery. Experiments 2
and 3 extend the test by studying real-world events and eliciting an independent assess-
ment of knowledge. In experiment 4, we sort subjects according to their area of expertise
and compare their willingness to bet on their expert category, a nonexpert category, and
chance. Finally, in experiment 5, we test the competence hypothesis in a pricing task that
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does not involve probability judgment. The relations between belief and preference are

discussed in the last section of the article.

1.1. Experiment 1: Betting on knowledge

Subjects answered 30 knowledge guestions in two different categories, such as history,
geography, or sports. Four alternative answers were pr'esented for each question, and the
subject first selected a single answer and then rated his or her cqnﬁdence in that answer
on a scale from 25% (pure guessing) to 100% (absolute certainty). Participants were
given detailed instructions about the use of the scale and the notion of calibration,
Specifically, they were instructed to use the scale so that a confidence rating of 60%, say,
would correspond to a hit rate of 60%. They were also told that these ratings would be
the basis for a money-making game, and warned that both underconfidence and over-
confidence would reduce their earnings.

After answering the questions and assessing confidence, subjects were given an.oppor-
tunity to choose between betting on their answers or on a lottery in which the probability
of winning was equal to their stated confidence. For a confidence rating of 75%, for
example, the subject was given the choice between 1) betting that his or her answer was
correct, or 2) bettingon a 75% lottery, defined by drawing a numbered chip in the range
1-75 from a bag filled with 100 numbered poker chips. For half of the questions, lotteries
were directly equated to confidence ratings. For the other half of the questions, subjects
chose between the complement of their answer (betting that an answer other than the
one they choose is correct) or the complement of their confidence rating. Thus, if a
subject chose answer A with confidence of 65%, the subject could choose between
betting that one of the remaining answers B, C, or D is correct, or bettingon a 100% —
65% = 35% lottery.

Two groups of subjects participated in the experiment. One group (N = 29) included
psychology students who received course credit for participation. The second group (N
= 26) was recruited from introductory economics classes and performed the experiment
for cash earnings. To determine the subjects’ payofis, ten questions were selected at
random, and the subjects played out the bets they had chosen. If subjects chose to
gamble on their answer, they collected $1.50 if their answer was correct. If subjects chose
to bet on the chance lottery, they drew a chip from the bag and collected $1.50 if the
number on the chip fell in the proper range. Average earnings for the experiment were
around $8.50.

Paid subjects took more time than unpaid subjects in selecting their answers and
assessing confidence; they were slightly more accurate. Both groups exhibited overconfi-
dence: the paid subjects answered correctly 47% of the questions and their average
confidence was 60%. The unpaid subjects answered correctly 43% of the questions and
their average confidence was 53%. We first describe the results of the simple lotteries;
the complementary (disjunctive) lotteries are discussed later.

The results are summarized by plotting the percentage of choices (C) that favor the
judgment bet over the lottery as a function of judged probability (P). Before discussing
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the actual data, it is instructive to examine several constrasting predictions, implied by
five alternative hypotheses, which are displayed in figure 1.

The upper panel of figure 1 displays the predictions of three hypotheses inwhich Cis
independent of P. According to expected utility theory, decision makers will be indif-
ferent between betting on their judgment or betting on a chance lottery; hence C should
equal 50% throughout. Ambiguity aversion implies that people will prefer to bet on a
chance event whose probability is well defined rather than on their judged probability,
which is inevitably vague; hence C should fall below 50% everywhere. The opposite
hypothesis, called chance aversion, predicts that people will prefer to bet on their judg-
ment rather than on a matched chance lottery; hence C should exceed 50% for all P. In
contrast to the flat predictions displayed in the upper panel, the two hypothesis in the
lower panel imply that C depends on P. The regression hypothesis states that the deci-
sion weights, which control choice, will be regressive relative to stated probabilities.
Thus, C will be relatively high for small probabilities and relatively low for high probabil-
ities. This prediction also follows from the theory proposed by Einhorn and Hogarth
(1985), who put forth a particular process model based on mental simulation, adjust-
ment, and anchoring. The predictions of this model, however, coincide with the regres-
sion hypothesis.

Finally, the competence hypothesis implies that people will tend to bet on their judg-
ment when they feel knowledgeable and on the chance lottery when they feel ignorant.
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Figure 1. Five contrasting predictions of the results of an uncertainty preference experiment.
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Because higher stated probability generally entails higher knowledge, C will be an in-
creasing function of P except at 100% where the chance lottery amounts to a sure thing.
The results of the experiment are summarized in table 1 and figure 2. Table 1 presents, for
three different ranges of P, the percentage of paid and nonpaid subjects who bet on their
answers rather than on the matched lottery. Recall that each question had four possible
answers, so the lowest confidence level is 25%. Figure 2 displays the overall percentage of
choices C that favored the judgment bet over the lottery as a function 2 of judged proba-
bility P. The graph shows that subjects chose the lottery when P was low or moderate
(below 65%) and that they chose to bet on their answers when P was high. The pattern of
results was the same for the paid and for the nonpaid subjects, but the effect was slightly
stronger for the latter group. These results confirm the prediction of the competence
hypothesis and reject the four alternative accounts, notably the ambiguity aversion hy-
pothesis implied by second-order probability models (e.g., Girdenfors and Sahlin, 1982),
and the regression hypothesis implied by the model of Einhorn and Hogarth (1985).

To obtain a statistical test of the competence hypothesis, we computed, separately for
each subject, the binary correlation coefficient (¢) between choice (judgment bet vs.
lottery) and judged probability (above median vs. below median). The median judgment
was .65. Seventy-two percent of the subjects yielded positive coefficients, and the average
¢ was .30, (#(54) = 4.3,p < .01). To investigate the robustness of the observed pattern,
we replicated the experiment with one major change. Instead of constructing chance
lotteries whose probabilities matched the values stated by the subjects, we constructed
lotteries in which the probability of winning was either 6% higher or 6% lower than the
subjects’ judged probability. For high-knowledge questions (P = 75%), the majority of
responses (70%) favored the judgment bet over the lottery even when the lottery offered
a (6% higher probability of winning. Similarly, for low-confidence questions (P = 50%)
the majority of responses (52%) favored the lottery over the judgment bet even when the
former offered a lower (6%) probability of winning.

Figure 3 presents the calibration curve for the data of experiment 1. The figure shows
that, on the whole, people are reasonably well calibrated for low probability but exhibit
substantial overconfidence for high probability. The preference for the judgment bet
over the lottery for high probability, therefore, cannot be justified on an actuarial basis.

The analysis of the complementary bets, where subjects were asked in effect to bet that
their chosen answer was incorrect, revealed a very different pattern. Across subjects, the
judgment bet was favored 40.5% of the time, indicating a statistically significant prefer-
ence for the chance lottery (#(54) = 3.8 p < .01). Furthermore, we found no systematic

Table 1. Percentage of paid and nonpaid subjects who preferred the judgment bet over the lottery for low,
medium, and high P (the number of observations are given in parentheses)

25=sP<50 S0<P<75 75<P=<100
Paid 29 42 55

(278) (174) (168)
Nonpaid 22 43 69

(394) (188) (140)
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Figure 2. Percentage of choice (C) that favor a judgment bet over a matched lottery as a function of judged
probability (P) in experiment 1.

relation between C and P, in marked contrast to the monotonic relation displayed in
figure 2. In accord with our attributional account, this result suggests that people prefer
to bet on their beliefs rather than against them. These data, however, may also be
explained by the hypothesis that people prefer to bet on simple rather than on disjunctive
hypotheses.

1.2. Experiment 2: Football and politics

Our next experiment differs from the previous one in three respects. First, it concerns the
prediction of real-world future events rather than the assessment of general knowledge.
Second, it deals with binary events so that the lowest level of confidence is .5 rather than
.25 as in the previous experiment. Third, in addition to judgments of probability, subjects
also rated their level of knowledge for each prediction.

A group of 20 students predicted the outcomes of 14 football games each week for five
consecutive weeks. For each game, subjects selected the team that they thought would
win the game and assessed the probability of their chosen team winning. The subjects
also assessed, on a five-point scale, their knowledge about each game. Following the
rating, subjects were asked whether they preferred to bet on the team they chose or-on a
matched chance lottery. The results summarized in figure 4 confirm the previous finding.
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Figure 3. Calibration curve for experiment 1.

For both high and low knowledge (defined by a median split on the knowledge rating
scale), C was an increasing function of P. Moreover, C was greater for high knowledge
than for low knowledge at any P > .5. Only 5% of the subjects produced negative
correlations between C and P, and the average ¢ coefficient was .33, ((77) = 8.7,p < 01).

We next took the competence hypothesis to the floor of the Republican National
Convention in New Orleans during August of 1988. The participants were volunteer
workers at the convention. They were given a one-page questionnaire that contained
instructions and an answer sheet. Thirteen states were selected to represent a cross
section of different geographical areas as well to include the most important states in
terms of electoral votes. The participants (N = 100) rates the probability of Bush carrying
each of the 13 states in the November 1988 election on a scale from 0 (Bush is certain to
lose) to 100 (Bush is certain to win). As in the football experiment, the participants rated
their knowledge of each state on a five-point scale and indicated whether they would
rather bet on their prediction or on a chance lottery. The results, summarized in figure 5,
show that C increased with P for both levels of knowledge, and that C was greater for
high knowledge than for low knowledge at all levels of P. When asked about their home
state, 70% of the participants selected the judgment bet over the lottery. Only 5% of the
subjects yielded negative correlations between C and P, and the average ¢ coefficient
was .42, (1(99) = 134,p < .01).

The results displayed in figures 4 and 5 support the competence hypothesis in the
prediction of real-world events: in both tasks C increases with P, as in experiment 1. In
that study, however, probability and knowledge were perfectly correlated; hence the
choice-judgment discrepancy could be attributed to a distortion of the probability scale
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Figure 4. Percentage of choices (C) that favor a judgment bet over a matched lottery as a function of judged
probability (P), for high- and low-knowledge items in the football prediction task (experiment 2).

in the judgement task. This explanation does not apply to the results of the present
experiment, which exhibits an independent effect of rated knowledge. As seen in figures
4 and 5, the preference for the judgment bet over the chance lottery is greater for
high-knowledge items than for low-knowledge items for all levels of judged probability. It
is noteworthy that the strategy of betting on judgment was less successful than the
strategy of betting on chance in both data sets. The former strategy yielded hit rates of
64% and 78% for football and election, respectively, whereas the latter strategy yielded
hit rates of 73% and 80%. The observed tendency to select the judgment bet, therefore,
does not yield better performance.

1.3. Experiment 3: Long shots

The preceding experiments show that people often prefer to bet on their judgment than
on a matched chance event, even though the former is more ambiguouis than the latter.
This effect, summarized in figures 2, 4 and 5, was observed at the high end of the
probability scale. These data could perhaps be explained by the simple hypothesis that
people prefer the judgment bet when the probability of winning exceeds .5 and the
chance lottery when the probability of winning is below .5. To test this hypothesis, we
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Figure 5. Percentage of choices (C) that favor a judgment bet over a matched lottery as a function of judged
probability (P), for high- and low-knowledge items in experiment 2 (election data).

sought high-knowledge items in which the probability of winning is low, so the subject’s
best guess is unlikely to be true. In this case, the above hypothesis implies a preference
for the chance lottery, whereas the competence hypothesis implies a preference. for the
judgment bet. These predictions are tested in the following experiment.

One hundred and eight students were presented with open-ended. questions ahout 12
future events (e.g., what movie will win this year’s Oscar for best picture? What football
team will win the next Super Bowl? In what class next quarter will you have the highest
grade?). They were asked to answer each question, to estimate the chances that their
guess will turn out to be correct, and to indicate whether they have high or low knowl-
edge of the relevant domain. The use of open-ended questions eliminates the lower
bound of 50% imposed by the use of dichotomous predictions in the previous experi-
ment. After the subjects completed these tasks, they were asked to consider, separately
for each question, whether they would rather bet on their prediction or on a matched
chance lottery.

On average, the subjects answered 10 out of 12 questions. Table 2 presents the per-
centage (C) of responses that favor the judgment bet over the chance lottery for high-
and low-knowledge items, and for judged probabilities below or above .5. The number of
responses in each cell is given in parentheses. The results show that, for high-knowledge
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Table 2. Percentage of choices (C) that favor a judgment bet over a matched lottery for high- and low-rated
knowledge and for judged probability below and above .5 (the number of responses are given in parentheses)

Judged probability

Rated knowledge P<5 P=5

Low 36 58
(593) (128)

High 61 69
(151) (276)

items, the judgment bet was preferred over the chance lottery regardless of whether P
was above or below one half (p < .01 in both cases), as implied by the competence
hypothesis. Indeed, the discrepancy between the low- and high-knowledge conditions
was greater for P < .5 than for P = 5. Evidently, people prefer to bet on their high-
knowledge predictions even when the predictions are unlikely to be correct.

1.4. Experiment 4: Expert prediction

In the preceding experiments, we used the subjects’ ratings of specific items to define
high and know knowledge. In this experiment, we manipulate knowledge or competence
by sorting subjects according to their expertise. To this end, we asked 110 students in an
introductory psychology class to assess their knowledge of politics and of football on a
nine-point scale. All subjects who rated their knowledge of the two areas on opposite
sides of the midpoint were asked to take part in the experiment. Twenty-five subjects met
this criterion, and all but two agreed to particpate. They included 12 political “experts”
and 11 football “experts” defined by their strong area. To induce the subjects to give
careful responses, we gave them detailed instructions including a discussion of calibra-
tion, and we employed the Brier scoring rule (see, e.g., Lichtenstein et al., 1982) designed
to motivate subjects to give their best estimates. Subjects earned about $10, on average.

The experiment consisted of two sessions. In the first session, each subject made
predictions for a set of 40 future events (20 political events and 20 football games). All
the events were resolved within five weeks of the date of the initial session. The political
events concerned the winner of the various states in the 1988 presidential election. The
20 football games included 10 professional and 10 college games. For each contest (pol-
itics or football), subjects chose a winner by circling the name of one of the contestants,
and then assessed the probability that their prediction would come true (on a scale from
50% to 100%).

Using the results of the first session, 20 triples of bets were constructed for each
participant. Each triple included three matched bets with the same probability of win-
ning generated by 1) a chance device, 2) the subject’s prediction in his or her strong
category, 3) the subject’s prediction in his or her weak category. Obviously, some events
appeared in more than one triple. In the second session, subjects ranked each of the 20
triples of bets. The chance bets were defined as in experiment 1 with reference to a box
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containing 100 numbered chips. Subjects were told that they would actually play their
choices in each of the triples. To encourage careful ranking, subjects were told that they
would play 80% of their first choices and 20% of their second choices.

The data are summarized in table 3 and in figure 6, which plots the attractiveness of
the three types of bets (mean rank order) against judged probability. The results show a
clear preference for betting on the strong category. Across all triples, the mean ranks
were 1.64 for the strong category, 2.12 for the chance lottery, and 2.23 for the weak
category. The difference among the ranks is highly significant (p < .001) by the Wilcoxen
rank sum test. In accord with the competence hypothesis, people prefer to bet on their
judgment in their area of competence, but prefer to bet on chance in an area in which
they are not well informed. As expected, the lottery became more popular than the
high-knowledge bet only at 100%. This pattern of result is inconsistent with an account
based on ambiguity or second-order probabilities because both the high-knowledge and
the low-knowledge bets are based on vague judgmental probabilities whereas the chance
lotteries have clear probabilities. Ambiguity aversion could explain why low-knowledge
bets are less attractive than either the high-knowledge bet or the chance bet, but it
cannot explain the major finding of this experiment that the vague high-knowledge bets
are preferred to the clear chance bets.

A noteworthy feature of figure 6, which distinguishes it from the previous graphs, is
that preferences are essentially independent of P. Evidently, the competence effect is
fully captured in this case by the contrast between the categories; hence the added
knowledge implied by the judged probability has little or no effect on the choice among
the bets.

Figure 7 presents the average calibration curves for experiment 4, separately for the
high- and low-knowledge categories. These graphs show that judgments were generally
overconfident: subjects’ confidence exceeded their hit rate. Furthermore, the overconfi-
dence was more pronounced in the high-knowledge category than in the low-knowledge
category. As a consequence, the ordering of bets did not mirror judgmental accuracy.
Summing across all triples, betting on the chance lottery would win 69% of the time,
betting on the novice category would win 64% of the time, and betting on the expert
category would win only 60% of the time. By betting on the expert category therefore the
subjects are losing, in effect, 15% of their expected earnings.

The preference for knowledge over chance is observed not only for judgments of
probability for categorical events (win, loss), but also for probability distributions over
numerical variables. Subjects (N = 93) were given an opportunity to set 80% confidence
intervals for a variety of quantities (e.g., average SAT score for entering freshmen at

Table 3. Ranking data for expert study

Rank
Type of bet Ist 2nd 3rd Mean rank
High-knowledge 192 85 68 1.64
Chance 74 155 116 212

Low-knowledge 79 105 161 2.23
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Figure 7. Calibration curves for high- and low-knowledge categories in experiment 4.

Stanford; driving distance from San Francisco to Los Angeles). After setting confidence
intervals, subjects were given the opportunity to choose between 1) betting that their
confidence interval contained the true value, or 2) an 80% lottery. Subjects preferred
betting on the confidence interval in the majority of cases, although this strategy paid off
only 69% of the time because the confidence intervals they set were generally too nar-
row. Again, subjects paid a premium of nearly 15% to bet on their judgment.
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1.5. Experiment 5: Complementary bets

The preceding experiments rely on judgments of probabillity to match the chance lottery
and the judgment bet. To control for possible biases in the judgment process, our last test
of the competence hypothesis is based on a pricing task that does not involve probability
judgment. This experiment also provides an estimate of the premium that subjects are
paying in order to bet on high-knowledge items.

Sixty-eight students were instructed to state their cash equivalent (reservation price)
for each of 12 bets. They were told that one pair of bets would be chosen and a few
students, selected at random, would play the bet for which they stated the higher cash
equivalent. (For a discussion of this payoff scheme, see Tversky, Slovic and Kahneman,
1990.) All bets in this experiment offered a prize of $15 if a given proposition were true,
and nothing otherwise. Complementary propositions were presented to different sub-
jects. For example, half the subjects were asked to price a bet that paid $15 if the air
distance between New York and San Francisco is more 2500 miles, and nothing other-
wise. The half of the subjects were asked to price the complementary bet that paid $15if
the air distance between New York and San Francisco is less than 2500 miles, and
nothing otherwise.

To investigate uncertainty preferences, we paired high-knowledge and low-knowledge
propositions. For example, we assumed that the subjects know more about the air dis-
tance between New York and San Francisco than about the air distance between Beijing
and Bangkok. We also assumed that our respondents (Stanford students) know more
about the percentage of undergraduate students who receive on-campus housing at
Stanford than at the University of Nevada, Las Vegas. As before, we refer to these
propositions as high-knowledge and low-knowledge items, respectively. Note that the
selection of the stated value of the uncertain quantity (e.g., air distance, percentage of
students) controls a subject’s confidence in the validity of the proposition in question,
independent of his or her general knowledge about the subject matter. Twelve pairs of
complementary propositions were constructed, and each subject evaluated one of the
four bets defined by each pair. In the air-distance problem, for example, the four propo-
sitions were d(SENY) > 2500, d(SENY) < 2500, d(Be,Ba) > 3000, d(Be,Ba) < 3000,
where d(SENY) and d(Be,Ba) denote, respectively, the distances between San Fran-
cisco and New York and between Beijing and Bangkok.

Note that according to expected value, the average cash equivalent for each pair of
complementary bets should be $7.50. Summing across all 12 pairs of complementary
bets, subjects paid on average $7.12 for the high-knowledge bets and only $5.96 for the
low-knowledge bets (p < .01). Thus, people were paying, in effect, a competence pre-
mium of nearly 20% in order to bet on the more familiar propositions. Furthermore, the
average price for the (complementary) high-knowledge bets was greater than that for the
low-knowledge bets in 11 out of 12 problems. For comparison, the average cash equiva-
lent for a coin toss to win $15 was $7. In accord with our previous findings, the chance
lottery is valued above the low-knowledge bets but not above the high-knowledge bets.

We next test the competence hypothesis against expected utility theory. Let H and H
denote two complimentary high-knowledge propositions, and let L and L denote the
corresponding low-knowledge propositions. Suppose a decision maker prefers betting on
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H over L and on H over L. This pattern is inconsistent with expected utility theory
because it implies that P(H) > P(L) and P(H) > P(L), contrary to the additivity assump-
tion P(H) + P(H) = P(L) + P(L) = 1.1If, on the other hand, high-knowledge bets are
preferred to low- -knowledge bets, such a pattern is likely to arise. Because the four
propositions (H, H, L, L) were evaluated by four different groups of subjects, we employ
a between-subject test of additivity. Let M(H;) be the median price for the high-
knowledge proposition H;, etc. The responses in problem  violate additivity, in the direction
implied by the competence hypothesis, whenever M(H;) > M(L;) and M(H;) = M( Lj).

Five of the 12 pairs of problems exhibited this pattern indicating a preference for the
high-knowledge bets, and none of the pairs exhibited the opposite pattern. For example,
the median price for betting on the proposition “more than 85% of undergraduates at
Stanford receive on-campus housing” was $7.50, and the median cash equivalent for
betting on the complementary proposition was $10. In contrast, the median cash equiv-
alent for betting on the proposition “more than 70% of undergraduates at UNLV receive
on-campus housing” was $3, and the median value for the complementary bet was §7.
The majority of respondents, therefore, were willing to pay more to bet on either side of
a high-knowledge item than on either side of a low-knowledge item.

The preceding analysis, based on medians, can be extended as follows. For each pair of
propositions (H;, L;), we computed the proportion of comparisons in which the cash
equivalent of H; exceeded the cash equivalent of L;, denoted P(H; > L;). We also
computed P(H; > L;) for the complementary propositions. All ties were excluded.
Under expected utility theory,

P(H; > L)+ P(H; > L)) = P(L; > H) + PL; > H) =

because the additivity of probability implies that for every comparison that favors H; over
L;, there should be another comparison that favors L ; over H;. On the other hand, if people
prefer the high-knowledge bets, as implied by the competence hypothesis, we expect

P(H; >L) + P(H; > L;) > P(L; > H;) + P(L; > H)).

Among the 12 pairs of complementary propositions, the above inequality was satisfied in
10 cases, the opposite inequality was satisfied in one case, and equality was observed in
one case, indicating a significant violation of additivity in the direction implied by the
competence hypothesis (p < .01 by sign test). These findings confirm the competence
hypothesis in a test that does not rely on judgments of probability or on a comparison-of
a judgment bet to a matched lottery. Hence, the present results cannot be attributedfoa
bias in the judgment process or in the matching of high- and low-knowledge items.

2. Discussion
The experiments reported in this article establish a consistent and pervasive discrepancy

between judgments of probability and choice between bets. Experiment 1 demonstrates
that the preference for the knowledge bet over the chance lottery increases with judged



22 CHIP HEATH /AMOS TVERSKY

confidence. Experiments 2 and 3 replicate this finding for future real-world events, and
demonstrate a knowledge effect independent of judged probability. In experiment 4, we
sort subjects into their strong and weak areas and show that people like betting on their
strong category and dislike betting on their weak category; the chance bet is intermediate
between the two. This pattern cannot be explained by ambiguity or by second-order
probability because chance is unambiguous, whereas judgmental probability is vague.
Finally, experiment 5 confirms the prediction of the competence hypothesis in a pricing
task that does not rely on probability matchings, and shows that people are paying a
premium of nearly 20% for betting on high-knowledge items.

These observations are consistent with our attributional account, which holds that
knowledge induces an asymmetry in the internal balance of credit and blame. Compe-
tence, we suggest, allows people to claim credit when they are right, and its absence
exposes people to blame when they are wrong. As a consequence, people prefer the
high-knowledge bet over the matched lottery, and they prefer the matched lottery over
the low-knowledge bet. This account explains other instances of uncertainty preferences
reported in the literature, notably the preference for clear over vague probabilities in a
chance setup (Ellsberg, 1961), the preference to bet on the future over the past (Roth-
bart and Snyder, 1970, Brun and Teigen, 1989), the preference for skill over chance
(Cohen and Hansel, 1959; Howell, 1971), and the enhancement of ambiguity aversion in
the presence of knowledgeable others (Curley, Yates and Abrams, 1986). The robust
finding that, in their area of competence, people prefer to bet on their (vague) beliefs
over a matched chance event indicates that the impact of knowledge or competence
outweighs the effect of vagueness.

In experiments 1-4 we used probability judgments to establish belief and choice data
to establish preference. Furthermore, we have interpreted the choice-judgment discrep-
ancy as a preference effect. In contrast, it could be argued that the choice-judgment
discrepancy is attributable to a judgmental bias, namely underestimation of the proba-
bilities of high-knowledge items and an overestimation of the probabilities of low-
knowledge items. This interpretation, however, is not supported by the available evi-
dence. First, it implies less overconfidence for high-knowledge than for low-knowledge
items contrary to fact (see figure 7). Second, judgments of probability cannot be dismissed as
inconsequential because in the presence of a scoring rule, such as the one used in experi-
ment 4, these judgments represent another form of betting. Finally, a judgmental bias can-
not explain the results of experiment 5, which demonstrates preferences for betting on
high-knowledge items in a pricing task that does not involve probability judgment.

The distinction between preference and belief lies at the heart of Bayesian decision
theory. The standard interpretation of this theory assumes that 1) the expressed beliefs
(i.e., probabililty judgments) of an individual are consistent with an additive probability
measure, 2) the preferences of an individual are consistent with the expectation princi-
ple, and hence give rise to a (subjective) probability measure derived from choice, and 3)
the two measures of subjective probability—obtained from judgment and from choice —
are consistent. Note that points 1 and 2 are logically independent. Allais’ counterexam-
ple, for instance, violates 2 but not 1. Indeed, many authors have introduced nonadditive
decision weights, derived from preferences, to accommodate the observed violations of
the expectation principle (see, e.g., Kahneman and Tversky, 1979). These decision
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weights, however, need not reflect the decision maker’s beliefs. A person may believe
that the probability of drawing the ace of spades from a well-shuffied deck is 1/52, yet in
betting on this event he or she may give it a higher weight. Similarly, Ellsberg’s example
does not prove that people regard the clear event as more probable than the correspond-
ing vague event; it only shows that people prefer to bet on the clear event. Unfortunately,
the term subjective probability has been used in the literature to describe decision weights
derived from preference as well as direct expressions of belief. Under the standard
interpretation of the Bayesian theory, the two concepts coincide. As we go beyond this
theory, however, it is essential to distinguish between the two.

2.1. Manipulations of ambiguity

The distinction between belief and preference is particularly important for the interpre-
tation of ambiguity effects. Several authors have concluded that, when the probability of
winning is small or when the probability of losing is high, people prefer ambiguity to
clarity (Curley and Yates, 1989; Einhorn and Hogarth, 1985; Hogarth and Kunreuther,
1989). However, this interpretation can be challenged because, as will be shown below,
the data may reflect differences in belief rather than uncertainty preferences. In this
section, we investigate the experimental procedures used to manipulate ambiguity and
argue that they tend to confound ambiguity with perceived probability.

Perhaps the simplest procedure for manipulating ambiguity is to vary the decision
maker’s confidence in a given probability estimate. Hogarth and his collaborators have
used two versions of this procedure. Einhorn and Hogarth (1985) presented the subject
with a probability estimate, based on the “judgement of independent observers,” and
varied the degree of confidence attached to that estimate. Hogarth and Kunreuther
(1989) “endowed” the subject with his or her “best estimate of the probability” of a given
event, and manipulated ambiguity by varying the degree of confidence associated with
this estimate. If we wish to interpret people’s willingness to bet on these sorts of events as
ambiguity seeking or ambiguity aversion, however, we must first verify that the manipu-
lation of ambiguity did not affect the perceived probability of the events.

To investigate this question, we first replicated the manipulation of ambiguity used by
Hogarth and Kunreuther (1989). One group of subjects (N = 62), called the high confi-
dence group, received the following information:

Imagine that you head a department in a large insurance company. The owner of a
small business comes to you seeking insurance against a $100,000 loss which could
result from claims concerning a defective product. You have considered the manufac-
turing process, the reliabilities of the machines used, and evidence contained in the
business records. After considering the evidence available to you, your best estimate
of the probability of a defective product is .01. Given the circumstances, you feel
confident about the precision of this estimate. Naturally you will update your estimate
as you think more about the situation or receive additional information.
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A second group of subjects (N = 64), called the low-confidence group, received the same
information, except that the phrase “you feel confident about the precision of this esti-
mate” was replaced by “you experience considerable uncertainty about the precision of
this estimate.” All subjects were then asked:

Do you expect that the new estimate will be (Check one):
Above .01

Below .01

Exactly .01

The two groups were also asked to evaluate a second case in which the stated probability
of a loss was .90. If the stated value (.01 or .90) is interpreted as the mean of the respective
second-order probability distribution, then a subject’s expectation for the updated estimate
should coincide with the current “best estimate.” Furthermore, if the manipulation of
confidence affects ambiguity but not perceived probability, there should be no difference
between the responses of the high-confidence and the low-confidence groups. The data
presented in table 4, under the heading Your probability, clearly violate these assump-
tions. The distributions of responses in the low-confidence condition are considerably
more skewed than the distributions in the high-confidence condition. Furthermore, the
skewness is positive for .01 and negative for .90. Telling subjects that they “experience
considerable uncertainty” about their best estimate produces a regressive shift: the ex-
pected probability of loss is above .01 in the first problem and below .90 in the second.
The interaction between confidence (high-low) and direction (above-below) is statisti-
cally significant (p < .01).

We also replicated the procedure employed by Einhorn and Hogarth (1985) in which
subjects were told that “independent observers have stated that the probability of a
defective product is .01.” Subjects (N = 52) in the high-confidence group were told that
“you could feel confident about the estimate,” whereas subjects (N = 52) in the low-
confidence group were told that “you could experience considerable uncertainty about
the estimate.” Both groups were then asked whether their best guess of the probability of
experiencing a loss is above .01, below .01, or exactly .01. The two groups also evaluated a

Table 4. Subjective assessments of stated probabilities of .01 and .90 under high-confidence and low-confidence
instructions (the entries are the percentage of subjects who chose each of the three TESpOnses)

Your probability Others’ estimate
High Low High Low
Stated value Response confidence confidence confidence confidence
Above .01 45 75 46 80
01 Exactly .01 34 11 15 6
Below .01 21 14 39 14
Above .90 29 28 42 26
.90 Exactly .90 42 14 23 12

Below .90 29 58 35 62
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second case in which the probability of loss was .90. The results presented in table 4,
under the heading Others’ estimate, reveal the pattern observed above. In the high-
confidence condition, the distributions of responses are fairly symmetric, but in the
low-confidence condition the distributions exhibit positive skewness at .01 and negative
skewness at .90. Again, the interaction between confidence (high-low) and direction
(above-below) is the statistically significant (p < .01).

These results indicate that the manipulations of confidence influenced not only the
ambiguity of the event in question but also its perceived probability: they increased the
perceived probability of the highly unlikely event and decreased the perceived probabil-
ity of the likely event. A regressive shift of this type is not at all unreasonable and can
even be rationalized by a suitable prior distribution. As a consequence of the shift in
probability, the bet on the vaguer estimate should be more attractive when the probabil-
ity of loss is high (.90) and less attractive when the probability of loss is low (.01). This is
exactly the pattern of preferences observed by Einhorn and Hogarth (1985) and by
Hogarth and Kunreuther (1989), but it does not entail either ambiguity seeking or am-
biguity aversion because the events differ in perceived probability, not only in ambiguity.

The results of table 4 and the findings of Hogarth and his collaborators can be ex-
plained by the hypothesis that subjects interpret the stated probability value as the
median (or the mode) of a second-order probability distribution. If the second-order
distributions associated with extreme probabilities are skewed towards .5, the mean is
less extreme than the median, and the difference between them is greater when ambigu-
ity is high than when it is low. Consequently, the mean of the second-order probability
distribution, which controls choice in the Bayesian model, will be more regressive (i.e.,
closer to .5) under low confidence than under high confidence.

The potential confounding of ambiguity and degree of belief arises even when ambi-
guity is manipulated by information regarding a chance process. Unlike Ellsberg’s com-
parison of the 50/50 box with the unknown box, where symmetry precludes a bias in one
direction or another, similar manipulations of ambiguity in asymmetric problems could
produce a regressive shift, as demonstrated in an unpublished study by Parayre and
Kahneman.?

These investigators compared a clear event, defined by the proportion of red balls in a
box, with a vague event defined by the range of balls of the designated color. For a vague
event [.8, 1], subjects were informed that the proportion of red balls could be anywhere
between .8 and 1, compared with .9 for the clear event. Table 5 presents both choice and
judgment data for three probability levels: low, medium, and high. In accord with previ-
ous work, the choice data show that subjects preferred to bet on the vague event when
the probability of winning was low and when the probability of lesing was high, and they
preferred to bet on the clear event in all other cases. The novel feature of the Parayre and
Kahneman experiment is the use of a perceptual rating scale based on a judgment of
length, which provides a nonnumerical assessment of probability. Using this scale, the
investigators showed that the judged probabilities were regressive. That is, the vague
low-probability event [0,.10] was judged as more probable than the clear event, .05, and
the vague high-probability event [.8,1] was judged as less probable than the clear event,
9. For the medium probability, there was no significant difference in judgment between
the vague event [0,1] and the clear event, .5. These results, like the data of table 4,
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Table 5. (Based on Parayre and Kahneman). Percentage of subjects who favored the clear event and the vague
event in judgment and in choice.

Choice

Probability Judgment Win $100 Lose $100

(win/lose) N =72 N = 58 N =58
Low .05 28 12 66
[0,.10] 47 74 22
Medium S5 38 60 60
[0,1] 22 26 21
High 9 50 50 22
[.8,1] 21 34 47

Note: The sum of the two values in each condition is less than 100%; the remaining responses expressed
equivalence. In the choice task, the low probabilities were .075 and [0,.15]. N denotes sample size.

demonstrate that the preference for betting on the ambiguous event (observed at the low
end for positive bets and at the high end for negative bets) could reflect a regressive shift
in the perception of probability rather than a preference for ambiguity.

2.2. Concluding remarks

The findings regarding the effect of competence and the relation between preferences
and beliefs challenge the standard interpretation of choice models that assumes
independence of preference and belief. The results are also at variance with post-
Bayesian models that invoke second-order beliefs to explain the effects of ambiguity or
partial knowledge. Moreover, our results call into question the basic idea of defining
beliefs in terms of preferences. If willingness to bet on an uncertain event depends on
more than the perceived likelihood of that event and the confidence in that estimate, it is
exceedingly difficult—if not impossible—to derive underlying beliefs from preferences
between bets.

Besides challenging existing models, the competence hypothesis might help explain
some puzzling aspects of decisions under uncertainty. It could shed light on the observa-
tion that many decision makers do not regard a calculated risk in their area of compe-
tence as a gamble (see, e.g., March and Shapira, 1987). It might also help explain why
investors are sometimes willing to forego the advantage of diversification and concen-
trate on a small number of companies (Blume, Crockett, and Friend, 1974) with which
they are presumably familiar. The implications of the competence hypothesis to decision
making at large are left to be explored.
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3. Notes

1. We use the term competence in a broad sense that includes skill, as well as knowl-
edge or understanding.

2. In this and all subsequent figures, we plot the isotone regression of C on P—that is,
the best-fitting monotone function in the least squares sense (see Barlow, Bartholomew,
Bremner and Brunk, 1972).

3. We are grateful to Parayre and Kahneman for providing us with these data.
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