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Introduction

Introduction

Proposed by Robert Solow (1956) and Trevor Swan (1956)

Most basic model to think about growth and macroeconomics,
featuring:

dynamics: it can be discrete or continuous
general equilibrium

Although not modelling

growth!
important macroeconomic correlates to growth like saving decisions

Still, very useful to evaluate the role of

factor accumulation
technological progress

We’ll cover the version in continuous time and with population growth.
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Introduction

Why continuous time?

Suppose
x(t + 1)− x(t) = g(x(t))

What is 1 period? One year? One week?

maybe we should make the time unit as small as possible!

When t and t + 1 are not too far apart, we can approximate the
change as

x(t + ∆t)− x(t) ' ∆t.g(x(t))

lim
∆t→0

x(t + ∆t)− x(t)

∆t
= ẋ(t) ' g(x(t))
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The setting

Setting

The model comprises:

1 closed economy

1 sector

representative firm producing output Y (t) and selling it at P(t) = 1
wheat economy : Y can be consumed or used for more production

consumers not explicitly modelled

no utility function
C (t) = (1− s)Y (t) with s ∈ (0, 1)
L(t) = L̄(t)
L̄(t) = en.t .L̄(0) with L̄(0) > 0

⇒ L̇(t)
L(t)

= n
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The setting

Production

The production function F is neoclassical:

twice differentiable and continuous

features constant returns to scale wrt K and L:

F (A, λK , λL) = λF (A,K , L)

features diminishing marginal returns to each factor:
FK > 0, FKK < 0, FL > 0, FLL < 0

satisfies Inada conditions

lim
K→0

FK =∞, lim
K→∞

FK = 0, and F (0, L,A) = 0,∀L and A

lim
L→0

FL =∞, lim
L→∞

FL = 0, ∀K and A
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The setting

Production

Moreover:

to hire production factors the firm pays rental rates w(t) and R(t).

K (0) ≥ 0

capital depreciates at rate 0 < δ ⇒ r(t) = R(t)− δ
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Equilibrium

Firm’s optimization and Equilibrium

The representative firm maximizes

maxF (K (t), L(t),A(t))− R(t)K (t)− w(t)L(t)

subject to K (t) = K̄ (t) ≥ 0 and L(t) = L̄(t) ≥ 0.

Notice the problem is not dynamic!!

The FOC give

w(t) = FL(K (t), L(t),A(t))

R(t) = FK (K (t), L(t),A(t))
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Equilibrium

Equilibrium equations

The full list of equilibrium equations are:

K̇ (t) = sF (K (t), L(t),A(t))− δK (t)

Y (t) = C (t) + I (t)

S(t) = I (t) = s.Y (t)

w(t) = FL(K (t), L(t),A(t))

R(t) = FK (K (t), L(t),A(t))

r(t) = R(t)− δ
C (t) = (1− s).Y (t)

L̄(t) = en.t
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Equilibrium

Equilibrium definition

In the basic Solow model with

population growth at rate n

an initial capital stock K (0)

and for a given sequence of {A(t)}∞t=0

an equilibrium path is a sequence {K (t), L(t),Y (t),C (t),w(t),R(t)}∞t=0

such that:

K (t) satisfies K̇ (t) = sF (K (t), L(t),A(t))− δK (t)

L(t) = en.tL(0)

Y (t) = F (A(t),K (t), L(t))

C (t) = (1− s).Y (t)

w(t) = FL(K (t), L(t),A(t))

R(t) = FK (K (t), L(t),A(t))
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Equilibrium

Equilibrium

Assume no technological progress: A(t) = A.

Define k(t) = K (t)/L(t), and
y(t) = Y (t)/L(t) = F (k(t), 1,A) = f (k(t)). Which implies that:

k̇(t)
k(t) = K̇(t)

K(t) − n

ẏ(t)
y(t) = Ẏ (t)

Y (t) − n

Then we obtain the fundamental law of motion of the Solow model:

k̇(t)

k(t)
= s

f (k(t))

k(t)
− (n + δ)

The path for the rest of the variables follows from this law of motion.
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Equilibrium

Steady state definition

A steady-state equilibrium without technological progress is an equilibrium
path in which k(t) = k∗∀t.

Such equilibrium implies:

s.f (k∗) = (δ + n).k∗

investment = capital use (depreciation+ pop. growth)
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Equilibrium

Steady state existence and uniqueness

0 k*

k(t )

Output

Consumption

Investment

f (k(t))

(• 1 n)k(t)

sf(k(t))

f(k*)

sf(k*)

FIGURE 2.8 Investment and consumption in the steady-state equilibrium with population growth.
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Equilibrium

First results

We have a first idea of the potential determinants of differences in
capital-labor ratios and output levels across countries:

Different economies may have different SS’s

the level of ySS is determined by parameters s, δ, and n.

the same is true for A if assuming Hicks-neutral production function
f̃ (k) = f (k)/A

∂k∗(A,s,δ,n)
∂A > 0, ∂k∗(A,s,δ,n)

∂s > 0, ∂k∗(A,s,δ,n)
∂δ < 0, ∂k∗(A,s,δ,n)

∂n < 0
∂y∗(A,s,δ,n)

∂A > 0, ∂y∗(A,s,δ,n)
∂s > 0, ∂y∗(A,s,δ,n)

∂δ < 0, ∂y∗(A,s,δ,n)
∂n < 0

Prove it!

Are all of these results intuitive?

c is similarly affected by A, n, and δ, but is not monotone in s
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Equilibrium

Maximum consumption level c∗gold

Among the different values of s (which yield different SS’s), there exists a
sgold such that c∗ is at its highest level: c∗gold . To find this notice that:

c∗(s) = (1− s)f (k∗(s))

sf (k∗(s)) = (n + δ)k∗

So, c∗(s) = f (k∗(s))− (n + δ)k∗(s). Then:

∂c∗(s)

∂s
= [f ′(k∗(s))− (n + δ)]

∂k∗(s)

∂s
∂c∗(s)

∂s
= 0⇔ f ′(k∗(sgold)) = n + δ
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Equilibrium

Dynamic Inefficiency

0 1
Saving rate

s*
gold

Consumption

gold
(l   s)f(k*     )

FIGURE 2.6 The golden rule level of saving rate, which maximizes steady-state consumption.
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Stability

Stability-Theorem

Let g : R→ R be continuously differentiable. Suppose that g(x∗) = 0
and that g(x) < 0 for all x > x∗ and g(x) > 0 for all x < x∗. Then the
steady state of the non-linear differential equation ẋ(t) = g(x(t)), x∗, is
globally asymptotically stable, that is, starting at any x(0), x(t)→ x∗.
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Stability

Transitional Dynamics in the Solow model

Under the current setting the model is globally asymptotically stable.
Starting from any k(0) > 0, k(t) monotonically converges towards k∗.

Why?

F is continuously differentiable ⇒ k̇ is continuously differentiable

if k < k∗ ⇒ s.f (k)− (n + δ)k > 0

if k > k∗ ⇒ s.f (k)− (n + δ)k < 0
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Stability

Transitional Dynamics in the Solow model

0

k*

k(t)

k(t)
·

k(t)

  (• 1 g 1 n)s

f(k(t))

k(t)

FIGURE 2.9 Dynamics of the capital-labor ratio in the basic Solow model.
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Main Results

Main conclusions of the basic Solow model

the model has no growth! (only transitional growth until SS)

to fix this we can

relax Assumptions 1 and 2 so we can have a model of sustained growth
with no tech progress (AK)
recognize tech progress matters and introduce it to the basic model

How should we do it? Respecting the Kaldor facts!
⇒ Balanced Growth
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Extensions

(Some of the) Kaldor facts
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FIGURE 2.11 Capital and labor share in the U.S. GDP.
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Extensions

The Solow model with Technological Progress

The model is still simple, but more realistic since:

A grows at rate g

The economy grows! (and it’s driven by A)

Kaldor facts hold

growth is balanced: K/Y , R and factor shares in income are constant.
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Extensions

Types of Technological Progress

Hicks-Nuetral: A(t).F (K (t), L(t))

Solow-Neutral: F (A(t).K (t), L(t)) (Capital-augmenting)

Harrod-Neutral: F (K (t),A(t).L(t)) (Labour-augmenting)
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Extensions

Types of Technological Progress
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FIGURE 2.12 (A) Hicks-neutral, (B) Solow-neutral, and (C) Harrod-neutral shifts in isoquants.
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Extensions

Balanced Growth-Uzawa’s Theorem

Consider a growth model with a general production function

Y (t) = F̃ (K (t), L(t), Ã(t)),

where F̃ exhibits constant returns to scale in K and L. The aggregate
resource constraint is

K̇ (t) = Y (t)− C (t)− δK (t).

Suppose that there is constant population growth, L(t) = entL(0), and

that there exists T <∞ such that for all t ≥ T , Ẏ (t)
Y (t) = gY > 0,

K̇(t)
K(t) = gK > 0 and Ċ(t)

C(t) = gC > 0. Then:

1 gY = gK = gC ; and

2 for any t ≥ T , there exists a function F : R2
+ → R+ homogeneous of

degree 1 in its two arguments, such that the aggregate production
function can be represented as Y (t) = F (K (t), L(t)A(t)).
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Extensions

Uzawa’s Theorem-Proof of Part 1

By assumption, for t ≥ T we have

Y (t) = egY (t−T )Y (T )

K (t) = egK (t−T )K (T )

C (t) = egC (t−T )C (T )

so we can write the resource constraint as

(gK + δ)K (t) = Y (t)− C (t)

(gK + δ)K (T ) = e(gY−gK )(t−T )Y (T )

−e(gC−gK )(t−T )C (T )

Differentiating wrt time:

0 = (gY − gK )e(gY−gK )(t−T )Y (T )

−(gC − gK )e(gC−gK )(t−T )C (T )
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Extensions

Uzawa’s Theorem-Proof of Part 1

0 = (gY − gK )e(gY−gK )(t−T )Y (T )

−(gC − gK )e(gC−gK )(t−T )C (T )

This expression holds if:

gY = gK = gC

gY = gC and Y (T ) = C (T ) , contradicts gK > 0

gY = gK and C (T ) = 0 , contradicts gC > 0 being finite

gK = gC and Y (T ) = 0 , contradicts Y (T ) > 0

Therefore it must be that gY = gK = gC .
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Extensions

Uzawa’s Theorem-Proof of Part 2

For any t > T , the production function at T can be written as

e−gY (t−T )Y (t) = F̃ (e−gK (t−T )K (t), e−n(t−T )L(t), Ã(T ))

Y (t) = F̃ (e(gY−gK )(t−T )K (t), e(gY−n)(t−T )L(t), Ã(T ))

From part 1, gY = gK for any t ≥ T , so:

Y (t) = F̃ (K (t), e(gY−n)(t−T )L(t), Ã(T ))

Since this equation is true for all t > T and F̃ is H1 in K and L, there
exists a function F , that is H1 such that

Y (t) = F (K (t), e(gY−n)tL(t))

were the term in blue represents Harrod-Neutral technological change, so
this can be re-written as

Y (t) = F (K (t),A(t)L(t)) with
Ȧ(t)

A(t)
= gY − n
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Extensions

Intuition of Uzawa’s Theorem

Given the properties of the production function, if gK > 0 then we must
have gY = gK = gC > 0.

Then, if n > 0, balanced growth requires growth in A to compensate for
gY − n.

convenient to express these kind of models in effective labor units.

Notice the theorem is silent about factor prices!

factor shares are not included in the discussion (→ 2nd Uzawa T).
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Extensions

Comparative Dynamics

Similar to Comparative Statics but analysing how the entire growth
path reacts to changes in parameters

Consider a one-time, unanticipated and permanent increase in the
saving rate from s to s ′
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Extensions

Comparative Dynamics

0
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FIGURE 2.13 Dynamics following an increase in the saving rate from s to s
′. The solid arrows show

the dynamics for the initial steady state, while the dashed arrows show the dynamics for the new steady

state.
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The Solow Model and the data

The Solow Model and the data-Growth accounting

In Solow (1957), he asks the question:

How much of growth can be attributed to increased L and K inputs?

Very little!

The rest is explained by technological progress!
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The Solow Model and the data

Growth accounting-Framework

Y = F (A,K , L)

Ẏ

Y
=

FAA

Y

Ȧ

A
+

FKK

Y

K̇

K
+

FLL

Y

L̇

L

Defining TFP as: x = FAA
Y

Ȧ
A

Defining elasticities: εk = FKK
Y and εl = FLL

Y
Assuming competitive markets: w = FL and R = FK .
Then elasticities become factor shares: αk = εk and αl = εl .

So we obtain:

x = gY − αkgK − αlgL
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The Solow Model and the data

Growth accounting-Limitations

the contribution of L is underestimated if we don’t account for human
capital

the contribution of K is underestimated if prices used to aggregate
them decline over time

besides of many quality changes over time.

Then, the contribution of TFP will be overestimated!
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The Solow Model and the data

The Solow Model and the data-Growth Regressions

Started by Barro (1991) and used extensively.

Solow model with labor-augmenting technological change:

y(t) = A(t)f (k(t))

ẏ(t)

y(t)
= g + εk(k(t))

˙k(t)

k(t)

and constant population growth

k̇(t)

k(t)
=

s.f (k(t))

k(t)
− (δ + g + n) (1)
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The Solow Model and the data

The Solow Model and the data-Growth Regressions

k̇(t)

k(t)
=

s.f (k(t))

k(t)
− (δ + g + n)

Log linearizing wrt log(k) around steady state value k∗, which implies:
1 Deriving wrt logk (using the property that

dg(x)/dlogx = (dg(x)/dx).x): so we get (f ′.k − f ).s/k
2 Constructing the Taylor expansion of function f (x) around x = a:

f (x) ≈ f (a) + f ′(a)(x − a)].
3 Using the fact that at SS: sf /k = δ + g + n

k̇(t)

k(t)
≈ 0 +

(
f ′(k∗)k∗

f (k∗)
− 1

)
sf (k∗)

k∗
(log(k(t))− log k∗)

k̇(t)

k(t)
≈ (εk(k∗)− 1)(δ + g + n)(log k(t)− log k∗)
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The Solow Model and the data

The Solow Model and the data-Growth Regressions

Merging both results together gives:

ẏ(t)

y(t)
= g − (1− εk(k∗))(δ + g + n)εk(k∗)(log k(t)− log k∗)

Defining y(t) = A(t)f (k(t)) so log(y(t)) = logA(t) + log(f (k(t))) and so

log(y(t)) ≈ log y∗ +
f ′(k∗)

f (k∗)
k∗(log k(t)− log k∗)

log(y(t)) ≈ log y∗ + εk(k∗)(log k(t)− log k∗)

And merging this with the result above gives:

ẏ(t)

y(t)
= g − (1− εk(k∗))(δ + g + n)(log y(t)− log y∗)
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The Solow Model and the data

The Solow Model and the data-Growth Regressions

ẏ(t)

y(t)
= g + (1− εk(k∗))(δ + g + n)(log y∗ − log y(t))

This equation shows:

2 sources of growth in per capita income in the Solow model:

technological progress: g
convergence: y(t) < y∗

speed of convergence depends on:

rate at which the effective capital-labor ratio needs to be replenished:
δ + g + n
capital-elasticity of the production function: εk(k∗)
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The Solow Model and the data

The Solow Model and the data-Growth Regressions

An approximation with observables:

gY =
∆yi (t

′ − t)

yi (t)
= b0 + b1. log yi (t) + νi

The evidence shows:

speed of convergence coefficient b1 is significantly negative for
developed economies

the same is not true for a sample of entire world.

Still, unconditional convergence is not what Solow predicts!
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The Solow Model and the data

The Solow Model and the data-Growth Regressions

A more sensible approach is estimating:

∆yi (t
′ − t)

yi (t)
= b0

i + b1. log yi (t) + νi

i.e. allowing for country specific tech progress g . or even

∆yi (t
′ − t)

yi (t)
= b0

i + b1
i . log yi (t) + νi

i.e. allowing also for country specific SS determinants (not used in the
literature).

While informative, regressions like these have problems (most notably,
endogeneity).
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