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Introduction

Introduction

@ Proposed by Robert Solow (1956) and Trevor Swan (1956)
@ Most basic model to think about growth and macroeconomics,
featuring:
e dynamics: it can be discrete or continuous
e general equilibrium
@ Although not modelling
e growth!
e important macroeconomic correlates to growth like saving decisions
@ Still, very useful to evaluate the role of

e factor accumulation
e technological progress

We'll cover the version in continuous time and with population growth.
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Introduction

Why continuous time?

Suppose
x(t+1) = x(t) = g(x(t))

@ What is 1 period? One year? One week?
e maybe we should make the time unit as small as possible!

@ When t and t + 1 are not too far apart, we can approximate the

change as
x(t+ At) — x(t) ~ At.g(x(t))
Jim MEELDZXD gy o ()
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Setting

The model comprises:
@ 1 closed economy

@ 1 sector
o representative firm producing output Y(t) and selling it at P(t) =1
e wheat economy: Y can be consumed or used for more production

@ consumers not explicitly modelled
e no utility function

C(t) =(1—s)Y(t) with s € (0,1)
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Production

The production function F is neoclassical:
@ twice differentiable and continuous

@ features constant returns to scale wrt K and L:
F(A,AK,AL) = AF(A K, L)

o features diminishing marginal returns to each factor:
Fx >0, Fk <0, Ff >0, F;; <0
@ satisfies Inada conditions
o lim Fx =00, lim Fx =0, and F(0,L,A)=0,VL and A
K—0 K—oo

o lim Fp =00, lim F =0, VK and A
L—0 L—oo
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Production

Moreover:
@ to hire production factors the firm pays rental rates w(t) and R(t).
e K(0)>0
e capital depreciates at rate 0 < § = r(t) = R(t) —
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Firm's optimization and Equilibrium

The representative firm maximizes

maxF(K(t), L(t),A(t)) — R(t)K(t) — w(t)L(t)
subject to K(t) = K(t) > 0 and L(t) = L(t) > 0.
Notice the problem is not dynamic!!

The FOC give
o w(t) = FL(K(t), L(t),A(t))
o R(t) = Fk(K(t), L(t), A(t))
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Equilibrium equations

The full list of equilibrium equations are:
o K(t) =sF(K(t),L(t),A(t)) — dK(t)
e Y(t)=C(t)+ I(t)
° 5( ) =1(t) = s.Y(t)
w(t) = FL(K(t), L(t), A(1))
° R( ) = Fr(K(t), L(t), A(t))
o r(t)=R(t)—0
° C(t) (1—s).¥(t)
( ) ent
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Equilibrium definition

In the basic Solow model with
@ population growth at rate n
@ an initial capital stock K(0)
e and for a given sequence of {A(t)}2,

an equilibrium path is a sequence {K(t), L(t), Y(t), C(t), w(t), R(t)}22,
such that:

o K(t) satisfies K(t) = sF(K(t), L(t), A(t)) — dK(t)

o L(t) = e™tL(0)

o Y(t) = F(A(t). K(£), L(1))
o C(t)=(1-5).Y(t)

o w(t) = Fu(K(2), L(t), A(t))
o R(t) = Fi(K(t), L(t), A(t)
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B
Equilibrium

Assume no technological progress: A(t) = A.

Define k(t) = K(t)/L(t), a
y(t) = (t)/L( ) = F(k(t ),1,A) = f(k(t)). Which implies that:
o K(t) _ K(r) _
k(t) T K()
() _ Y(1)

v(e) — "

y(t)
Then we obtain the fundamental law of motion of the Solow model:

k() _ k(D)
Ko~ k()

The path for the rest of the variables follows from this law of motion.

—(n+9)
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B
Steady state definition

A steady-state equilibrium without technological progress is an equilibrium
path in which k(t) = k*Vt.

Such equilibrium implies:

s.f(k*) = (5+n).k

investment = capital use (depreciation+ pop. growth)
Growth T 11/39
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Steady state existence and uniqueness

Output

Sk*)

Consumption

sf(k)

Investment

(8 + n)k(r)

Sik(1))

k(1)

0 k*

k(1)

FIGURE 2.8 Investment and consumption in the steady-state equilibrium with population growth.
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First results

We have a first idea of the potential determinants of differences in
capital-labor ratios and output levels across countries:

o Different economies may have different SS's

o the level of y55 is determined by parameters s, §, and n.
e the same is true for A if assuming Hicks-neutral production function
f(k) = f(k)/A
° Bk*(g\:qs,zi,n) >0, 0k™(A,s,d,n) >0, 8k*(g,65,5,n) <0, ak*(/g,ns,&n) <0

Os
9y (Ass,3,n) 9y”(As,8,n) 9y (A;s,8,n) 9y (As,8,n)
° 34 >0, 55 >0, 35 <0, 0 <0

Prove it!

Are all of these results intuitive?

@ c is similarly affected by A, n, and §, but is not monotone in s
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: : .
Maximum consumption level Crold

Among the different values of s (which yield different SS's), there exists a
Sgoid such that c* is at its highest level: c;,;. To find this notice that:

c’(s) = (1—9)f(k*(s))
sf(k*(s)) = (n+9)k*

So, c*(s) = f(k*(s)) — (n+ 0)k*(s). Then:

c*(s) s ok*(s)
= [PR(s) — (n+ 0]
oc*(s
(9.5 ) = 0«& f’(k*(sgo/d)) =n+90
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Dynamic Inefficiency

Consumption

S I

Saving rate

FIGURE 2.6 The golden rule level of saving rate, which maximizes steady-state consumption.
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Stability-Theorem

Let g : R — R be continuously differentiable. Suppose that g(x*) =0
and that g(x) < 0 for all x > x* and g(x) > 0 for all x < x*. Then the
steady state of the non-linear differential equation x(t) = g(x(t)), x*, is
globally asymptotically stable, that is, starting at any x(0), x(t) — x*.
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Stability

Transitional Dynamics in the Solow model

Under the current setting the model is globally asymptotically stable.
Starting from any k(0) > 0, k(t) monotonically converges towards k*.

Why?
e F is continuously differentiable = k is continuously differentiable
o if k <k*=s.f(k)—(n+d)k>0
o if k >k*=s.f(k)—(n+d)k<0
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Stability

Transitional Dynamics in the Solow model

L0}
k(1)
0 k(t)
K+
k(1))
s —@+gtn
k(1)

FIGURE 2.9 Dynamics of the capital-labor ratio in the basic Solow model.
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Main Results

Main conclusions of the basic Solow model

@ the model has no growth! (only transitional growth until SS)
@ to fix this we can
e relax Assumptions 1 and 2 so we can have a model of sustained growth

with no tech progress (AK)
e recognize tech progress matters and introduce it to the basic model

@ How should we do it? Respecting the Kaldor facts!
= Balanced Growth
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_ Evemion ]
(Some of the) Kaldor facts

Labor and capital share in total value added
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FIGURE 2.11 Capital and labor share in the U.S. GDP.
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The Solow model with Technological Progress

The model is still simple, but more realistic since:

@ A grows at rate g
@ The economy grows! (and it's driven by A)

o Kaldor facts hold
e growth is balanced: K/Y, R and factor shares in income are constant.

21/39
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o
Types of Technological Progress

o Hicks-Nuetral: A(t).F(K(t), L(t))
o Solow-Neutral: F(A(t).K(t), L(t)) (Capital-augmenting)
e Harrod-Neutral: F(K(t), A(t).L(t)) (Labour-augmenting)
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S ===
Types of Technological Progress

FIGURE 2.12 (A) Hicks-neutral, (B) Solow-neutral, and (C) Harrod-neutral shifts in isoquants.
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Balanced Growth-Uzawa's Theorem

Consider a growth model with a general production function
Y (1) = F(K(2), L(1), A(t)),

where F exhibits constant returns to scale in K and L. The aggregate
resource constraint is

K(t) = Y(t)— C(t) — K(t).

Suppose that there is constant population growth, L(t) = e"*L(0), and

that there exists T < oo such that for all t > T, ’;gg gy >0,
K(t) _

RO = gk >0 and %:gc>0. Then:
Q@ gy =gk =gc; and
@ for any t > T, there exists a function F : ]R%r — R4 homogeneous of
degree 1 in its two arguments, such that the aggregate production
function can be represented as Y(t) = F(K(t), L(t)A(t)).
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- et
Uzawa's Theorem-Proof of Part 1
By assumption, for t > T we have

o Y(t) =ee"(t=T)Y(T)
o K(t) = esx(t=TIK(T)
o C(t) = esc(t=T)C(T)

so we can write the resource constraint as

(gx +6)K(t) = Y(t)—C(t)
(gx +OK(T) = elev—edt=Ty(T)
_elec—ex)(t=T) c(T)

Differentiating wrt time:

0 = (gy —gk)e@&)E=Tly(T)
—(gc — gk )el&c—&E=T) C(T)
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Uzawa's Theorem-Proof of Part 1

0 = (gy —gk)e@&)E=Ty(T)
—(gc — gk )el&c—&E=T) C(T)

This expression holds if:
® 8y = 8Kk = 8C
@ gy =gc and Y(T)= C(T), contradicts gx >0
e gy =gk and C(T) =0, contradicts gc > 0 being finite
@ gk =gc and Y(T) =0, contradicts Y(T) >0
Therefore it must be that gy = gk = gc¢-

Ourens (Tilburg) Growth T 26/39 26 /39



Uzawa's Theorem-Proof of Part 2

For any t > T, the production function at T can be written as
e & =Ny (1) = Fe &< (t=TK(¢), e "t~ (1), A(T))
Y (t) = F(eler=8)(t=TIK(¢), eler=mE=T)(£), A(T))
From part 1, gy = gk forany t > T, so:
Y(t) = F(K(t), e® ME=T)(£), A(T))

Since this equation is true for all t > T and F is H! in K and L, there
exists a function F, that is H! such that

Y(t) = F(K(t), e& "0 L(1))

were the term in blue represents Harrod-Neutral technological change, so
this can be re-written as

Y(t) = F(K(t), A(t)L(t)) with 28 — gy —

Ourens (Tilburg) Growth T 27 /39 27 /39



Intuition of Uzawa's Theorem

Given the properties of the production function, if g > 0 then we must
have gy = gk = g¢c > 0.
Then, if n > 0, balanced growth requires growth in A to compensate for

gy — n.
@ convenient to express these kind of models in effective labor units.

Notice the theorem is silent about factor prices!

o factor shares are not included in the discussion (— 2nd Uzawa T).
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Comparative Dynamics

@ Similar to Comparative Statics but analysing how the entire growth
path reacts to changes in parameters

o Consider a one-time, unanticipated and permanent increase in the
saving rate from s to s’
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Comparative Dynamics

0}
k(1)
0 k()
Fk()
~~~~~ s' -G +g+n
k(1)
Fk(r))
s —@B+g+n
k(1)

FIGURE 2.13 Dynamics following an increase in the saving rate from s to s". The solid arrows show
the dynamics for the initial steady state, while the dashed arrows show the dynamics for the new steady
state.
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The Solow Model and the data-Growth accounting

In Solow (1957), he asks the question:
@ How much of growth can be attributed to increased L and K inputs?
o Very little!

@ The rest is explained by technological progress!
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The Solow Model and the data

Growth accounting-Framework

Y = F(AK,L)
Y _ FaAA FKK RLL
Y Y A Y K Y L
Defining TFP as: x = iyAé
Defining elasticities: €, = F’{,K and ¢ = %

Assuming competitive markets: w = f; and R = Fg.
Then elasticities become factor shares: o) = €4 and oy = €.

So we obtain:

X = 8y — Q8K — 8L
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The Solow Model and the data

Growth accounting-Limitations

@ the contribution of L is underestimated if we don't account for human
capital

@ the contribution of K is underestimated if prices used to aggregate
them decline over time

@ besides of many quality changes over time.

Then, the contribution of TFP will be overestimated!
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The Solow Model and the data-Growth Regressions

Started by Barro (1991) and used extensively.

Solow model with labor-augmenting technological change:

WO = AWFKE)
ﬁg _ g+ek<k(t>>f§3

and constant population growth

k(t) s.F(k(t))
ko W—((H—g%—n) (1)
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The Solow Model and the data-Growth Regressions

k(t) s.f(k(t))
x(0) = k) (0+g+n)

Log linearizing wrt log(k) around steady state value k*, which implies:

@ Deriving wrt logk (using the property that
dg(x)/dlogx = (dg(x)/dx).x): so we get (f'.k — f).s/k

@ Constructing the Taylor expansion of function f(x) around x = a:

f(x) =~ f(a) + f'(a)(x — a)].
© Using the fact that at SS: sf /k=0+g+n

LGN, (f’(k*)k* - 1) (k)

og(k(t)) — log k*)

2%3 ~1 (€k(k*) - 1)(5 +8+ n)(log k(t) — log k*)
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The Solow Model and the data-Growth Regressions

Merging both results together gives:

P8 =2 = (1= k)0 + &+ )eu(k)(oE K(©) - log k)
Defining y(t) = A(t)f(k(t)) so log(y(t)) = log A(t) + log(f(k(t))) and so
log(y(t)) =~ logy™ + ’:((::)) k*(log k(t) — log k*)

log(y(t)) = log y™ + ex(k™)(log k(t) — log k™)

And merging this with the result above gives:

igg =8 — (1= e(k))(0 + g + n)(log y(t) — log y™)
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The Solow Model and the data-Growth Regressions

I g+ (1 k)0 + &+ n)logy” ~ log (1)
This equation shows:
@ 2 sources of growth in per capita income in the Solow model:
e technological progress: g
e convergence: y(t) < y*
@ speed of convergence depends on:

e rate at which the effective capital-labor ratio needs to be replenished:
0+g+n
o capital-elasticity of the production function: ex(k*)

Ourens (Tilburg) Growth T 37/39 37/39



The Solow Model and the data-Growth Regressions

An approximation with observables:

_Ay(t —t)

= b° + bl logyi(t) + v
yi(t) ()

8y

The evidence shows:

@ speed of convergence coefficient b! is significantly negative for
developed economies

@ the same is not true for a sample of entire world.

Still, unconditional convergence is not what Solow predicts!
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The Solow Model and the data-Growth Regressions

A more sensible approach is estimating:

Ayi(t' —t)
yi(t)

i.e. allowing for country specific tech progress g. or even

= b? + bl logyi(t) + v

Ay(t' —t) 0 1
SYRE ) 10 4 b log yi(t) + v
yi(t) ()

i.e. allowing also for country specific SS determinants (not used in the
literature).

While informative, regressions like these have problems (most notably,
endogeneity).
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