CHAPTER

IT'WELVE
OPTIMIZATION WITH EQUALITY CONSTRAINTS

The last chapter presented a general method for finding the relative extrema of an
objective function of two or more choice variables. One important feature of that
discussion is that all the choice variables are independent of one another, in the
sense that the decision made regarding one variable does not impinge upon the
choices of the remaining variables. For instance, a two-product firm can choose
any value for Q, and any value for Q, it wishes, without the two choices limiting
each other.

If the said firm is somehow required to observe a restriction (such as a
production quota) in the form of Q, + Q, = 950, however, the independence
between the choice variables will be lost. In that event, the firm’s profit-maximiz-
ing output levels Q, and Q, will be not only simultaneous but also dependent,
because the higher Q, is, the lower 0, must correspondingly be, in order to stay
within the combined quota of 950. The new optimum satisfying the production
quota constitutes a constrained optimum, which, in general, may be expected to
differ from the free optimum discussed in the preceding chapter.

A restriction, such as the production quota mentioned above, establishes a
relationship between the two variables in their roles as choice variables, but this
should be distinguished from other types of relationships that may link the
variables together. For instance, in Example 2 of Sec. 11.6, the two products of
the firm are related in consumption (substitutes) as well as in production (as is
reflected in the cost function), but that fact does not qualify the problem as one of
constrained optimization, since the two output variables are still independent as
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370 OPTIMIZATION PROBLEMS

choice variables. Only the dependence of the variables qua choice variables gives
rise to a constrained optimum.

In the present chapter, we shall consider equality constraints only, such as
Q, + @, = 950. Our primary concern will be with relative constrained extrema,
although absolute ones will also be discussed in Sec. 12.4.

12.1 EFFECTS OF A CONSTRAINT

The primary purpose of imposing a constraint is to give due cognizance to certain
limiting factors present in the optimization problem under discussion.

We have already seen the limitation on output choices that result from a
production quota. For further illustration, let us consider a consumer with the
simple utility (index) function
(12.1) U=xx,+ 2x,

Since the marginal utilities—the partial derivatives U, = 0U/dx, and U, =
dU/dx,—are positive for all positive levels of x, and x, here, to have U
maximized without any constraint, the consumer should purchase an infinite
amount of both goods, a solution that obviously has little practical relevance. To
render the optimization problem meaningful, the purchasing power of the con-
sumer must also be taken into account; i.e., a budget constraint should be
incorporated into the problem. If the consumer intends to spend a given sum, say,
$60, on the two goods and if the current prices are P\, = 4 and P,, = 2, then the
budget constraint can be expressed by the linear equation

(12.2) 4x, + 2x, = 60

Such a constraint, like the production quota referred to earlier, renders the
choices of X, and x, mutually dependent.

The problem now is to maximize (12.1). subject to the constraint stated in
(12.2). Mathematically, what the constraint (variously called restraint, side rela-
tion, or subsidiary condition) does is to narrow the domain, and hence the range of
the objective function. The domain of (12.1) would normally be the set
{(xy, x,)|x; 2 0, x, > 0}. Graphically, the domain is represented by the nonnega-
tive quadrant of the x,x, plane in Fig. 12.1a. After the budget constraint (12.2) is
added, however, we can admit only those values of the variables which satisfy this
latter equation, so that the domain is immediately reduced to the set of points
lying on the budget line. This will automatically affect the range of the objective
function, too; only that subset of the utility surface lying directly above the
budget-constraint line will now be relevant. The said subset (a cross section of the
surface) may look like the curve in Fig. 12.1b, where U is plotted on the vertical
axis, with the budget line of diagram a placed on the horizontal axis. Our interest,
then, is only in locating the maximum on the curve in diagram b.

In general, for a function z = f(x, y), the difference between a constrained
extremum and a free extremum may be illustrated in the three-dimensional graph
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of Fig. 12.2. The free extremum in this particular graph is the peak point of the
entire dome, but the constrained extremum is at the peak of the inverse U-shaped
curve situated on top of (i.e., lying directly above) the constraint line. In general,
a constrained maximum can be expected to have a lower value than the free
maximum, although, by coincidence, the two maxima may happen to have the
same value. But the constrained maximum can never exceed the free maximum.

It is interesting to note that, had we added another constraint intersecting the
first constraint at a single point in the xy plane, the two constraints together
would have restricted the domain to that single point. Then the locating of the
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extremum would become a trivial matter. In a meaningful problem, the number
and the nature of the constraints should be such as to restrict, but not eliminate,
the possibility of choice. Generally, the number of constraints should be less than
the number of choice variables.

12.2 FINDING THE STATIONARY VALUES

Even without any new technique of solution, the constrained maximum in the
simple example defined by (12.1) and (12.2) can easily be found. Since the
constraint (12.2) implies

60 — 4x,
—*2—=30—2X1

we can combine the constraint with the objective function by substituting (12.2')
into (12.1). The result is an objective function in one variable only:

U=x,(30 = 2x,) + 2x, = 32x, — 2x?

which can be handled with the method already learned. By setting dU Jdx, =
32 — 4x, equal to zero, we get the solution X, = 8, which by virtue of (12.2)
immediately leads to X, = 30 — 2(8) = 14. From (12.1), we can then find the
stationary value U = 128; and since the second derivative is d2U /dxi = —4 <0,
that stationary value constitutes a (constrained) maximum of U.*

When the constraint is itself a complicated function, or when there are several
constraints to consider, however, the technique of substitution and elimination of
variables could become a burdensome task. More importantly, when the con-
straint comes in a form such that we cannot solve it to express one variable (x,)
as an explicit function of the other (x,), the elimination method would in fact be
of no avail—even if x, were known to be an implicit function of x,, that is, even
if the conditions of the implicit-function theorem were satisfied. In such cases, we
may resort to a method known as the method of Lagrange (undetermined)
multiplier, which, as we shall see, Las distinct analytical advantages.

(122) x,=

Lagrange-Multiplier Method

The essence of the Lagrange-multiplier method is to convert a constrained-
extremum problem into a form such that the first-order condition of the free-
extremum problem can still be applied.

Given the problem of maximizing U = x,x, + 2x,, subject to the constraint
4x, + 2x, = 60 [from (12.1) and (12.2)], let us write what is referred to as the
Lagrangian function, which is a modified version of the objective function that

*You may recall that for the flower-bed problem of Exercise 9.4-2 the same technique of
substitution was applied to find the maximum area, using a constraint (the available quantity of wire
netting) to eliminate one of the two variables (the length or the width of the flower bed).
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incorporates the constraint as follows:

(12.3)  Z = x;x, + 2x, + A(60 — 4x, — 2x,)

The symbol A (the Greek letter lambda), representing some as yet undetermined
number, is called a Lagrange (undetermined) multiplier. If we can somehow be
assured that 4x, + 2x, = 60, so that the constraint will be satisfied, then the last
term in (12.3) will vanish regardless of the value of A. In that event, Z will be
identical with U. Moreover, with the constraint out of the way, we only have to
seek the free maximum of Z, in lieu of the constrained maximum of U, with
respect to the two variables x, and x,. The question is: How can we make the
parenthetical expression in (12.3) vanish?

The tactic that will accomplish this is simply to treat A as an additional
variable in (12.3), i.e., to consider Z = Z(A, x|, x,). For then the first-order
condition for free extremum will consist of the set of simultaneous equations

Z,(=0Z/0\ ) =60 — 4x, — 2x, =0
(124)  Z,(=0Z/0x,)=x,+2—4r =0
Z,(=0Z/3x,) = x, — 2A =0

and the first equation will automatically guarantee the satisfaction of the con-
straint. Thus, by incorporating the constraint into the Lagrangian function Z and
by treating the Lagrange multiplier as an extra variable, we can obtain the
constrained extremum U (two choice variables) simply by screening the stationary
values of Z, taken as a free function of three choice variables.

Solving (12.4) for the critical values of the variables, we find X, = 8, X, = 14
(and X = 4). As expected, the values of X, and X, check with the answers already
obtained by the substitution method. Furthermore, it is clear from (12.3) that
7 = 128: this is identical with the value of U found earlier. as it should be.

In general, given an objective function

(12.5)  z=f(x,y)
subject to the constraint
(12.6) g(x,y)=c

where c¢ is a constant,* we can write the Lagrangian function as

(127)  Z=f(x,y) + e~ glx. )]
For stationary values of Z, regarded as a function of the three variables A, x. and

* 1t is also possible to subsume the constant ¢ under the contraint function so that (12.6) appears
instead as G(x, y) =0, where G(x. )= g(x.y)~ ¢ In that case, (12.7) should be changed to
Z = f(x.¥) + A0 = G(x, )] =f(x.y) —AG(x.y). The version in (12.6) is chosen because it
facilitates the study of the comparative-static effect of a change in the constraint constant later see
(12.16)).
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v, the necessary condition is

Zy=c—glx.y)=0

Zy :fv - }\gl = O
Since the first equation in (12.8) is simply a restatement of (12.6), the stationary
values of the Lagrangian function Z will automatically satisfy the constraint of
the original function z. And since the expression A[¢ — g(x, )] is now assuredly
zero, the stationary values of Z in (12.7) must be identical with those of (12.5),

subject to (12.6).
Let us illustrate the method with two more examples.

Example 1 Find the extremum of
z=xy subject to x+y=6

The first step is to write the Lagrangian function
Z=xy+A6-x—y)

For a stationary value of Z, it is necessary that

Z,=6—-x—y=0 xX+y=6
Z=y—-A=0 or -A +y=0
Z,=x-A=0 A+ x =90

Thus, by Cramer’s rule or some other method, we can find
A=3 x=3 §=3

The stationary value is Z = Z = 9, which needs to be tested against a second-order
condition before we can tell whether it is a maximum or minimum (or neither).
That will be taken up later.

Example 2 Find the extremum of
z=x?+x} subjectto  x; +4x, =2
The Lagrangian function is
Z=xt+x3+A2—-x, —4x,)

for which the necessary condition for a stationary value is

Z,=2—-x, —4x,=0 X, +4dx,=2
Z|=2x1_>‘=0 or —A+ 2x, =0
Z,=2x,—4A =0 —4A +2x,=0

The stationary value of Z, defined by the solution

= 4 7 o= 7. =&
A=1 X =17 Xy =13

=
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is therefore Z = 7 = %. Again, a second-order condition should be consulted
before we can tell whether 7 is a maximum or a minimum.

Total-Differential Approach

In the discussion of the free extremum of z = f(x, y). it was learned that the
first-order necessary condition may be stated in terms of the total differential dz
as follows:

(12.9) z=fdx+ fdy=0

This statement remains valid after a constraint g(x, y) = ¢ ts added. However,
with the constraint in the picture. we can no longer take dx and dy both as
“arbitrary”” changes as before. For if g(x. v) = ¢, then dg must be equal to dc,
which is zero since ¢ is a constant. Hence.

(12.10) (dg=)g. dx +g d =0

and this relation makes dx and &y dependent on each other. The first-order
necessary condition therefore becomes dz = 0 [(12.9)]. subject to g = ¢, and hence
also subject to dg = 0 [(12.10)]. By visual inspection of (12.9) and (12.10), it
should be clear that. in order to satisfy this necessary condition, we must have

Lo_h
g\ g\

(12.11)

This result can be verified by solving (12.10) for dy and substituting the result into
(12.9). The condition (12.11), together with the constraint g(x, y)= c¢. will
provide two equations from which to find the critical values of x and y.*

Does the total-differential approach yield the same first-order condition as
the Lagrange-multiplier method? Let us compare (12.8) with the result just
obtained. The first equation in (12.8) merely repeats the constraint; the new result
requires its satisfaction also. The last two equations in (12.8) can be rewritten,
respectively, as

(12.11") = =A and —=A

and these convey precisely the same information as (12.11). Note, however, that
whereas the total-differential approach yields only the values of ¥ and j. t

Lagrange-multiplier method also gives the value of X as a direct by-product. As it
turns out, A provides a measure of the sensitivity of Z (and 7) to a shift of the
constraint, as we shall presently demonstrate. Therefore, the Lagrange- multiplier

* Note that the constraint g = ¢ is still to be considered along with (12.11), even though we have
utilized the equation dg = 0-— that is. (12.10)-—in deriving (12.11). While g = ¢ necessarily implies
dg = 0. the converse is not true: dg = 0 merely implies ¢ = a constant (not necessarily ¢). Unless the
constraint is explicitly considered. therefore. some information will be unwittingly left out of the
problem.
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method offers the advantage of containing certain built-in comparative-static
information iI} the solution.

An Interpretation of the Lagrange Multiplier

To show that X indeed measures the sensitivity of Z to changes in the constraint.
let us perform a comparative-static analysis on the first-order condition (12.8).
Since A, x, and y are endogenous, the only available exogenous variable is the
constraint parameter ¢. A change in ¢ would cause a shift of the constraint curve
in the xy plane and thereby alter the optimal solution. In particular, the effect of
an increase in ¢ (a larger budget, or a larger production quota) would indicate
how the optimal solution is affected by a relaxation of the constraint.

To do the comparative-static analysis, we again resort to the implicit-function
theorem. Taking the three equations in (12.8) to be in the form of F/(A, x, y; ¢)
= 0 (with j = 1,2, 3), and assuming them to have continuous partial derivatives.
we must first check that the following endogenous-variable Jacobian (where

fxy = fyx’ and g.xy = gyx)

oF' 9F' 9F'| | | _ -
N ax  ay 8 By
OF*  9F* 9F?

(1212) |J| = I\ F dy = T8« f,\:\' - >\g)cx fxy - }\g,\'y
gF®  9F®  9F°
8}\ 3x ay _g\' fx_v - Agx»\' fvy - }\g,\')'

does not vanish in the optimal state. At this moment, there is certainly no inkling
that this would be the case. But our previous experience with the comparative
statics of optimization problems [see the discussion of (11.42)] would suggest that
this Jacobian is closely related to the second-order sufficient condition, and that if
the sufficient condition is satisfied, then the Jacobian will be nonzero at the
equilibrium (optimum). Leaving the full demonstration of this fact to the follow-
ing section, let us proceed on the assumption that |J| # 0. If so, then we can
express A, X, and 7 all as implicit functions of the parameter c:

(12.13)  A=X(¢) x=%x(¢) and F=7(c)
all of which will have continuous derivatives. Also, we have the identities
c—-g(x.y)=0
(12.14)  f(X.7) - Ag (%, 7)=0
f(Z7) - g (%, 7)=0
Now since the optimal value of Z depends on A, X, and 7, that is,
(12.15)  Z=/(%,7) + A[c - g(x. 7)]
we may, in view of (12.13), consider Z to be a function of ¢ alone. Differentiating
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Z totally with respect to ¢, we find

dZ _ AR d5 AR o v &y
de - * de +fv dc + [C g(x’y)] de + >\(1 8x de gy de

Rg )& RV X
=(fx‘>‘gx)7i‘+(fv—>\gy)%y; [c—g(iy‘)]%c—ﬂ

where f,, f,, 8., and g, are all to be evaluated at the optimum. By (12.14),
however, the first three terms on the right will all drop out. Thus we are left with
the simple result

az

(12.16)  —==A

which validates our claim that the solution value of the Lagrange multiplier
constitutes a measure of the effect of a change in the constraint via the parameter
¢ on the optimal value of the objective function.

A word of caution, however, is perhaps in order here. For this interpretation
of X, you must express Z specifically as in (12.7). In particular, write the last term
as A[c — g(x, )], not M[g(x, y) = c].

n-Variable and Multiconstraint Cases

The generalization of the Lagrange-multiplier method to n variables can be easily
carried out if we write the choice variables in subscript notation. The objective
function will then be in the form

2= f(x), X500, X,
subject to the constraint

g(x,, xy,...,x,) =c¢

It follows that the Lagrangian function will be

Z=f(x;, x5, x,) + A —g(x, x5... ., x,)]
for which the first-order condition will consist of the following (n + 1) simulta-
neous equations:

Zy=c—g(x, x3,...,x,)=0

Zi=fi—Ag =0

Z,=f,—Ag,=0

ZH =f;7 - Ag?l = O
Again, the first of these equations will assure us that the constraint is met, even
though we are to focus our attention on the free Lagrangian function.

When there is more than one constraint, the Lagrange-multiplier method is

equally applicable, provided we introduce as many such multipliers as there are
constraints in the Lagrangian function. Let an n-variable function be subject
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simultaneously to the two constraints
glx, xy....x,)=c and  h(x, x,.....x,)=d
Then, adopting A and pu (the Greek letter mu) as the two undetermined multi-
pliers, we may construct a Lagrangian function as follows:
Z=f(x; x5 X))+ A= glx), X500 x,)]
+uld = h(x. x5, ..0x,)]

This function will have the same value as the original objective function fif both
constraints are satisfied, i.e., if the last two terms in the Lagrangian function both
vanish. Considering A and p as variables, we now count (n + 2) variables
altogether; thus the first-order condition will in this case consist of the following
(n + 2) simultaneous equations:

Zy=c¢—g{x;.x5,...,x,)=0

Z,=d—h(x),x5.....x,)=0

lefl_kg[—lihlzo (i:l,2,...,n)

These should normally enable us to solve for all the x, as well as A and u. As
before. the first two equations of the necessary condition represent essentially a
mere restatement of the two constraints.

EXERCISE 12.2

1 Use the Lagrange-multiplier method to find the stationary values of z:
(g) z = xy,subject to x + 2 =2

(b) z=x(y + 4),subject tox + p =8

(¢) z=x — 3y — xy,subject to x + y = 6

(d) z=7—y + x7, subject to x + y =0

2 In the above problem, find whether a slight relaxation of the constraint will increase or
decrease the optimal value of z. At what rate?

3 Write the Lagrangian function and the first-order condition for stationary values
(without solving the equations) for each of the following:

(a) z=x+ 2y + 3w+ xy — vw, subject to x + y + 2w = 10

(b) z=x7 4 2xy + yw”, subject to 2x + vy + w” =24 and x + w = 8

4 If, instead of g(x.y) = ¢, the constraint is written in the form of G(x, )= 0, how
should the Lagrangian function and the first-order condition be modified as a_conse-
quence?

S In discussing the total-differential approach, it was pointed out that, given the constraint
g(x, y) = ¢, we may deduce that dg = 0. By the same token, we can further deduce that
d*g = d(dg) = d(0) = 0. Yet, in our earlier discussion of the unconstrained extremum of
a function z = f(x, y), we had a situation where ¢z = 0 is accompanied by either a
positive definite or a negative definite "z, rather than 4z = 0. How would vou account
for this disparity of treatment in the two cases?
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