CHAPTER

THIRTEEN

ECONOMIC DYNAMICS
AND INTEGRAL CALCULUS

The term dynamics, as applied to economic analysis, has had different meanings
at different times and for different economists.* In standard usage today, how-
ever, the term refers to the type of analysis in which the object is either to trace
and study the specific time paths of the variables or to determine whether, given
sufficient time, these variables will tend to converge to certain (equilibrium)
values. This type of information is important because it fills a serious gap that
marred our study of statics and comparative statics. In the latter, we always make
the arbitrary assumption that the process of economic adjustment inevitably leads
to an equilibrium. In a dynamic analysis, the question of “attainability” is to be
squarely faced, rather than assumed away.

One salient feature of dynamic analysis is the dating of the variables, which
introduces the explicit consideration of time into the picture. This can be done in
two ways: time can be considered either as a_continuous variable or_as a_discrete
variable. In the former case, something is happening to the variable at each point
of time (such as in continuous interest compounding); whereas in the latter, the
variable undergoes a change only once within a period of time (e.g., interest is

* Fritz Machlup, “Statics and Dynamics: Kaleidoscopic Words,” Southern Economic Journal,
October, 1959, pp. 91-110; reprinted in Machlup, Essays on Economic Semantics, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1963, pp. 9-42.
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436 DYNAMIC ANALYSIS

added only at the end of every 6 months). One of these time concepts may be
more appropriate than the other in certain contexts.

We shall discuss first the continuous-time case, to which the mathematical
techniques of integral calculus and differential equations are pertinent. Later, in
Chaps. 16 and 17, we shall turn to the discrete-time case, which utilizes the
methods of difference equations.

13.1 DYNAMICS AND INTEGRATION

In a static model, generally speaking, the problem is to find the values of the
endogenous variables that satisfy some specified equilibrium condition(s). Ap-
plied to the context of optimization models, the task becomes one of finding the
values of the choice variables that maximize (or minimize) a specific objective
function—with the first-order condition serving as the equilibrium condition. In a
dynamic model, by contrast, the problem involves instead the delineation of the
time path of some variable, on the basis of a known pattern of change (say, a
given instantaneous rate of change).

An example should make this clear. Suppose that population size H is known
to change over time at the rate

dH
dt

We then try to find what time path(s) of population H = H(t) can yield the rate
of change in (13.1).

You will recognize that, if we know the function H = H(t) to begin with, the
derivative dH /dt can be found by differentiation. But in the problem now
confronting us, the shoe is on the other foot: we are called upon to uncover the
primitive function from a given derived function, rather than the reverse. Mathe-
matically, we now need the exact opposite of the method of differentiation, or of
differential calculus.

The relevant method, known as integration, or integral calculus, will be
studied below. For the time being, let us be content with the observation that the
function H(t) = 2¢'/? does indeed have a derivative of the form in (13.1), thus
apparently qualifying as a solution to our problem. The trouble is that there also
exist similar functions, such as H(z) = 2¢'/% + 15 or H(r) = 2¢'/? + 99 or, more
generally,

(13.1) — 1

(13.2)  H(t) =2+ ¢  (c = an arbitrary constant)

which all possess exactly the same derivative (13.1). No unique time path can be
determined, therefore, unless the value of the constant ¢ can somehow be made
definite. To accomplish this, additional information must be introduced into the
model, usually in the form of what is known as an initial condition or boundary
condition.

If we have knowledge of the nitial population H(0)—that is, the value of H
at ¢ = 0, let us say, H(0) = 100—then the value of the constant ¢ can be made
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ECONOMIC DYNAMICS AND INTEGRAL CALCULUS 437

determinate. Setting 7 = 0 in (13.2), we get
H(0)=20)"?+c=¢

But if H(0) = 100, then ¢ = 100, and (13.2) becomes

{13.2") H(t)=2t"2+ 100

where the constant is no longer arbitrary. More generally, for any given initial
population H(0), the time path will be

(13.27)  H(r) = 262 + H(0)

Thus the population size H at any point of time will, in the present example,
consist of the sum of the initial population H(0) and another term involving the
time variable ¢. Such a time path indeed charts the complete itinerary of the
variable H over time, and thus it truly constitutes the solution to our dynamic
model. [Equation (13.1) is also a function of r. Why can’t iz be considered a
solution as well?]

Simple as it is, this population example illustrates the quintessence of the
problems of economic dynamics. Given the pattern of behavior of a variable over
time, we seek to find a function that describes the time path of the variable. In the
process, we shall encounter one or more arbitrary constants, but if we possess
sufficient additional information in the form of _initial conditions, it will be
possible to definitize these arbitrary constants.

In the simpler types of problem, such as the one cited above, the solution can
be found by the method of integral calculus, which deals with the process of
tracing a given derivative function back to its primitive function. In more
complicated cases, we can also resort to the known techniques of the closely
related branch of mathematics known as differential equations. Since a differential
equation is defined as any equation containing differential or derivative expres-
sions, (13.1) surely qualifies as one; consequently, by finding its solution, we have
in fact already solved a differential equation, albeit an exceedingly simple one.

Let us now proceed to the study of the basic concepts of integral calculus.
Since we discussed differential calculus with x (rather than r) as the independent
variable, for the sake of symmetry we shall use x here, too. For convenience,
however, we shall in the present discussion denote the primitive and derived
functions by F(x) and f(x), respectively, rather than distinguish them by the use
of a prime.

13.2 INDEFINITE INTEGRALS

The Nature of Integrals

It has been mentioned that integration is the reverse of differentiation. If
differentiation of a given primitive function F(x) yields the derivative f(x), we
can “integrate” f(x) to find F(x), provided appropriate information is available
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438 DYNAMIC ANALYSIS

to definitize the arbitrary constant which will arise in the process of integration.
The function F(x) is referred to as an integral (or antiderivative) of the function
f(x). These two types of process may thus be likened to two ways of studying a
family tree: integration involves the tracing of the parentage of the function f{ x).
whereas differentiation seeks out the progeny of the function F(x). But note this
difference—while the (differentiable) primitive function F(x) invariably produces
a lone offspring, namely, a unique derivative f(x), the derived function f(x) is
traceable to an infinite number of possible parents through integration, because if
F(x})1s an integral of f(x), then so also must be F(x) plus any constant, as we
saw in (13.2).

We need a special notation to denote the required integration of f(x) with
respect to x. The standard one is

/f(x) dx

The symbol on the left—an elongated S (with the connotation of sum, to be
explained later)—is called the integral sign, whereas the f(x) part is known as the
integrand (the function to be integrated), and the dx part—similar to the dx in the
differentiation operator d/dx-—reminds us that the operation is to be performed
with respect to the variable x. However, you may also take f(x) dx as a single
entity and interpret it as the differential of the primitive function F(x) [that is,
dF(x) = f(x) dx]. Then, the integral sign in front can be viewed as an instruction
to reverse the differentiation process that gave rise to the differential. With this
new notation, we can write that

(13.3) a%F(x)=f(x) = [f(x)dx = F(x) + ¢

where the presence of ¢, an arbitrary constant of integration, serves to indicate the
multiple parentage of the integrand.

The integral [f(x) dx is, more specifically, known as the indefinite integral of
f(x) (as against the definite integral to be discussed in the next section), because it
has no definite numerical value. Because it is equal to F(x) + ¢, its value will in
general vary with the value of x (even if ¢ is definitized). Thus, like a derivative,
an indefinite integral is itself a function of the variable x.

Basic Rules of Integration

Just as there are rules of derivation, we can also develop certain rules of
integration. As may be expected. the latter are heavily dependent on the rules of
derivation with which we are already familiar. From the following derivative
formula for a power function,

d(xm)=x" (n+ —1)

dxlin+1

for instance, we see that the expression x"*! /(n + 1) is the primitive function for
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the derivative function x"; thus, by substituting these for F(x) and f(x) in (13.3),
we may state the result as a rule of integration.

Rule I (the power rule)

n _ 1 n+i .
/x dx—n+1x + ¢ (n+ —-1)

Example 1 Find [x*dx. Here, we have n = 3, and therefore

1
34 _ 1 4
/x dx 7x +c

Example 2 Find [x dx. Since n = 1, we have

_ 1
/xdx—zx +c

Example 3 Whatis [1dx? To find this integral, we recall that x° = 1; so we can
let n = 0 in the power rule and get

f]dx=x+c

[/1dx is sometimes written simply as [ dx, since 1dx = dx.]
Example 4 Find [Vx? dx. Since Vx* = x*/2, we have n = 3 therefore,

5/2 ,
JiRar =12 v o= 2

5
2

. 1 .
Example 5 Find | —dx, (x #+ 0). Since 1/x* = x "%, we have n = —4. Thus
o

the integral is

Note that the correctness of the results of integration can always be checked
by differentiation; if the integration is correct, the derivative of the integral must
be equal to the integrand.

The derivative formulas for simple exponential and logarithmic functions
have been shown to be

d o . 4.1
e =e and i Inx = . (x>0)

From these, two other basic rules of integration emerge.

Rule II (the exponential rule)

fe"dx =e*+ ¢
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Rule II1 (the logarithmic rule)
1
/;dx=lnx+c (x> 0)

It is of interest that the integrand involved in Rule Il is 1 /x = x !, which is
a special form of the power function x” with n = — 1. This particular integrand is
inadmissible under the power rule, but now is duly taken care of by the
logarithmic rule.

As stated, the logarithmic rule is placed under the restriction x > 0, because
logarithms do not exist for nonpositive values of x. A more general formulation of
the rule, which can take care of negative values of x, is

1
f;dx=ln|x|+c (x +0)
which also implies that (d/dx)in|x] = 1/x, just as (d/dx)Inx = 1/x. You

should convince yourself that the replacement of x (with the restriction x > 0) by
|x| (with the restriction x # 0) does not vitiate the formula in any way.

Also, as a matter of notation, it should be pointed out that the integral

1 . . . dx
f ;dx is sometimes also written as f <

As variants of Rules II and I1I, we also have the following two rules.
Rule Ila

ff’(x)ef(")dx =/ 4 ¢

Rule I1la
f'(x)
f(x)

dc=1Inf(x)+c¢ [f(x)>0]

or  Inl|f(x) +c [f(x)+ 0]

The bases for these two rules can be found in the derivative rules in (10.20).

Rules of Operation

The three rules given above amply illustrate the spirit underlying all rules of
integration. Each rule always corresponds to a certain derivative formula. Also,
an arbitrary constant is always appended at the end (even though it is to be
definitized later by using a given boundary condition) to indicate that a whole
family of primitive functions can give rise to the given integrand.

To be able to deal with more complicated integrands, however, we shall also
find the following two rules of operation with regard to integrals helpful.
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Rule IV  (the integral of a sum) The integral of the sum of a finite number of
functions is the sum of the integrals of those functions. For the two-function case,
this means that

JUrx) +g(x)] dx = [f(x) dx + [g(x) ax
This rule is a natural consequence of the fact that

(%[F(x)+ G(x)] = %F(x) + %G(x) = f(x) +g(x)
%ﬁ—/

C
A B

Inasmuch as 4 = C, on the basis of (13.3) we can write

(13.4) [[f(x) +g(x)] dx = F(x) + G(x) + ¢

But, from the fact that B = C, it follows that

ff(x)dx=F(x)+cl and /g(x)dx=G(x)+c2

Thus we can obtain (by addition)

(13.5) /f(x)dx+fg(x)dx=F(x)+G(x)+cl+cz

Since the constants ¢, ¢|, and ¢, are arbitrary in value, we can let ¢ = ¢; + c,.
Then the right sides of (13.4) and (13.5) become equal, and as a consequence,
their left sides must be equal also. This proves Rule IV,

Example 6 Find [(x® + x + 1) dx. By Rule 1V, this integral can be expressed as
a sum of three integrals: [x®dx + [x dx + [1dx. Since the values of these three
integrals have previously been found in Examples 1, 2, and 3, we can simply
combine those results to get

/(x3+x+1)dx=(§4—4 +cl)+(%2+cz)+(x+c3)

x4 x?

=T+7+X+C

In the final answer, we have lumped together the three subscripted constants into
a single constant c.

As a general practice, all the additive arbitrary constants of integration that
emerge during the process can always be combined into a single arbitrary
constant in the final answer.

Example 7 Find f (2e2" + - dx. By Rule IV, we can integrate the two
X< +

additive terms in the integrand separately, and then sum the results. Since the
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2%~ term is in the format of f'(x)e/**) in Rule Ila, with f(x) = 2x, the integral is
e?* + c,. Similarly, the other term, 14x/(7x? + 5), takes the form of f'(x)/f(x).
with f(x) = 7x* + 5 > 0. Thus, by Rule Illa, the integral is In(7x? + 5) + ¢,.
Hence we can write

14
f(Zez" + X ) dx =e** + In(7x* + 5) + ¢

Tx2 4+ 5

where we have combined ¢, and ¢, into one arbitrary constant c.

Rule V (the integral of a multiple) The integral of & times an integrand (k
being a constant) is k times the integral of that integrand. In symbols,

fkf(x)dx=kff(x)dx

What this rule amounts to, operationally, is that a multiplicative constant can
be “factored out” of the integral sign. (Warning: A variable term cannot be
factored out in this fashion!) To prove this rule, we recall that & times f( x) merely
means adding f(x) k times; therefore, by Rule IV,

Jigtyds = [ L) 1)+ -+ )]s
- ff(X)dx+/f(x)dx+---+ff(x)dx =kff(x)dx

Example 8 Find [ — f(x)dx. Here Kk = —1, and thus

f—f(x) dx = —ff(x)dx

That is, the integral of the negative of a function is the negative of the integral of
that function.

Example 9 Find [2x? dx. Factoring out the 2 and applying Rule I, we have

3
; X 2
/2x2dx=2fx‘dx=2(%— +<-,>= Jx e

Example 10 Find [3x? dx. In this case, factoring out the multiplicative constant
yields

3

f3x2dx=3fx2dx=3(% +c,)=x3+c

Note that, in contrast to the preceding example, the term x* in the final answer
does not have any fractional expression attached to it. This neat result is due to
the fact that 3 (the multiplicative constant of the integrand) happens to be
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precisely equal to 2 (the power of the function) plus 1. Referring to the power rule
(Rule I), we see that the multiplicative constant (n + 1) will in such a case cancel
out the fraction 1/(n + 1), thereby yielding (x"*! + ¢) as the answer.

In general, whenever we have an expression (n + 1)x” as the integrand, there
1s really no need to factor out the constant (» + 1) and then integrate x"; instead,
we may write x"*! + ¢ as the answer right away.

[ 3 . .
Example 11 Find f Se* ~ x *+ ;)dx, (x # 0). This example illustrates both
Rules IV and V; actually, it illustrates the first three rules as well:

f(Se"—— é + %)dx=5/exdx—/x"2dx+3f%dx

[by Rules IV and V]
-1

= (5¢* + ¢,) — (x__l + c2) + (3In|x| + ¢;)

1
=5e"+; + 3In|x| + ¢

The correctness of the result can again be verified by differentiation.

Rules Involving Substitution

Now we shall introduce two more rules of integration which seek to simplify the
process of integration, when the circumstances are appropriate, by a substitution
of the original variable of integration. Whenever the newly introduced variable of
integration makes the integration process easier than under the old, these rules
will become of service.

Rule VI (the substitution rule) The integral of f(u)(du/dx) with respect to
the variable x is the integral of f(u) with respect to the variable u:

ff(u)c—dlzdx = ff(u) du= F(u)+c

X

where the operation [ du has been substituted for the operation | dx.

This rule, the integral-calculus counterpart of the chain rule, may be proved
by means of the chain rule itself. Given a function F(u), where u = u(x), the
chain rule states that

d d du N du

o) = - Flu) oo = Frlu) == = f(u)

Since f(u)(du/dx) is the derivative of F(u), it follows from (13.3) that the
integral (antiderivative) of the former must be

/f(u)%dx = F(u)+c
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You may note that this result, in fact, follows also from the canceling of the two
dx expressions on the left.

Example 12 Find [2x(x? + 1) dx. The answer to this can be obtained by first
multiplying out the integrand:
4

fzx(x2+ 1)dx=f(2x3+2x)dx= % +x2+ ¢

but let us now do it by the substitution rule. Let u = x> + 1; then du/dx = 2x,
or dx = du/2x. Substitution of du/2x for dx will yield
2

2xuﬂ = fudu=% + ¢
f 2x 2

f2x(x2+l)dx
1 4 2 La, 2
=§(x + 2x +l)+c‘=§x +x°+c

where ¢ = 3 + ¢,. The same answer can also be obtained by substituting du/dx
for 2x (instead of du/2x for dx).

Example 13 Find [6x?(x* + 2)® dx. The integrand of this example is not easily
multiplied out, and thus the substitution rule now has a better opportunity to
display its effectiveness. Let u = x* + 2; then du/dx = 3x?, so that

/(2%)u99dx = /2u99du

__3_100 __1_ 3 100
= o0 ¢ +c—50(x +2)  +e¢

féxz(x3 +2)% dx

Example 14 Find [8e?**3dx. Let u = 2x + 3; then du/dx = 2, or dx = du/2.
Hence,

f8e2‘“3dx = /86’"% = 4/e“du =de" +c=4e> + ¢

As these examples show, this rule is of help whenever we can—by the
judicious choice of a function ¥ = u(x)—express the integrand (a function of x)
as the product of f(u) (a function of u) and du/dx (the derivative of the u
function which we have chosen). However, as illustrated by the last two examples,
this rule can be used also when the original integrand is transformable into a
constant multiple of f(u)(du/dx). This would not affect the applicability because
the constant multiplier can be factored out of the integral sign, which would then
leave an integrand of the form f(u)(du/dx), as required in the substitution rule.
When the substitution of variables results in a variable muitiple of f(u)(du/dx),
say, x times the latter, however, factoring is not permissible, and this rule will be
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of no help. In fact, there exists no general formula giving the integral of a product
of two functions in terms of the separate integrals of those functions; nor do we
have a general formula giving the integral of a quotient of two functions in terms
of their separate integrals. Herein lies the reason why integration, on the whole, is
more difficult than differentiation and why, with complicated integrands, it is
more convenient to look up the answer in prepared tables of integration formulas
rather than to undertake the integration by oneself.

Rule VII (integration by parts) The integral of v with respect to u is equal to
uv less the integral of u with respect to v:

/vdu=uv—fudv

The essence of this rule is to replace the operation [du by the operation | dv.
The rationale behind this result is relatively simple. First, the product rule of
differentials gives us

d(uv) =vdu+ udo

If we integrate both sides of the equation (i.e., integrate each differential), we get a
new equation

/d(uv)=/vdu+ fudu

or uv= /v du + /u dv [no constant is needed on the left (why?)]

Then, by subtracting [u dv from both sides, the result stated above emerges.

Example 15 Find [x(x + 1)'/?dx. Unlike Examples 12 and 13, the present
example is not amenable to the type of substitution used in Rule VI. (Why?)
However, we may consider the given integral to be in the form of [v du. and
apply Rule VIIL. To this end, we shall let v = x, implying dv = dx, and also let
u=2(x + 1)*/%, so that du = (x + 1)"/? dx. Then we can find the integral to be

fx(x+ 1) dx = fodu=uv— fudv

_ 2 e (2 32
—3(x+1) x f3(x+l) dx

_ 2 2. 4 sz,
—3(x+l) X 15(x+l) + ¢

Example 16 Find [1In x dx, (x > 0). We cannot apply the logarithmic rule here,
because that rule deals with the integrand 1 /x, not In x. Nor can we use Rule VI.
But if we let v = Inx, implying dv = (1/x) dx, and also let u = x, so that



446 DYNAMIC ANALYSIS
du = dx, then the integration can be performed as follows:
flnxdx = /vdu= uv — /udv
=xlnx - fdx=xlnx—x+c=x(lnx— 1)+¢

Example 17 Find [xe™ dx. In this case, we shall simply let v = x, and u = e, so
that dv = dx and du = e~ dx. Applying Rule VII, we then have

fxexdx=fvdu=uv— fudv

=e"x—v/e"dx=e*’x—e“+c=e*(x—-l)+c

The validity of this result, like those of the preceding examples, can of course be
readily checked by differentiation.

EXERCISE 13.2

1 Find the following:

(a) fléx’—‘dx (x + 0) (d) [2e7> dx
, 4x
b) [ 9x¥dx d
()fx)g (e)/x2+1x
(o) [(x* = 3x) ax (f) [@ax + b)ax® + bx) dx
2 Find:
(a) fl3e"dx (d) f3e QD gy

(b) f(3e‘+ %)dx (x> 0) () f4xe":+3dx

(c) /(5e‘+ %)dx (x+0)  (f) fxe"””dx

3 Find:
3dx 2x
— x*+0 (¢ dx
@ [ (x#0) © [=5
dx X
) [Z5  (x#D (d)f3x2+sdx
4 Find;
(a) f(x+3)(x+ 1)'/2 dx (b) fxlnxdx (x> 0)
5 Given # constants k, (with i = 1,2,.. ., n) and » functions f,( x), deduce from Rules IV
and V that

[ £ hnterax= X fro)
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13.3 DEFINITE INTEGRALS

Meaning of Definite Integrals

All the integrals cited in the preceding section are of the indefinite variety: each is
a function of a variable and, hence, possesses no definite numerical value. Now,
for a given indefinite integral of a continuous function f(x),

/f(x)dx — F(x)+c¢

if we choose two values of x in the domain, say, @ and b (a < b), substitute them
successively into the right side of the equation, and form the difference

[F(b) +c] = [F(a) +c] = F(b) — F(a)

we get a specific numerical value, free of the variable x as well as the arbitrary
constant ¢. This value is called the definite integral of f(x) from a to b. We refer to
a as the lower limit of integration and to b as the upper limit of integration.

In order to indicate the limits of integration, we now modify the integral sign

to the form f The evaluation of the definite integral is then symbolized in the

following steps:
(13.6) /”f(x) dx = F(x)] ~ F(b) - F(a)

where the symbol |/ (also written |? or [--- ]%) is an instruction to substitute b
and a, successively, for x in the result of integration to get F(b) and F(a), and
then take their difference, as indicated on the right of (13.6). As the first step,
however, we must find the indefinite integral, although we may omit the constant
¢, since the latter will drop out in the process of difference-taking anyway.

5., . . o . .
Example 1 Evaluate f3x'dx. Since the indefinite integral is x* + ¢, this

1
definite integral has the value

5
f53x2dx :x-‘] =5y -1y =125-1=124
1

1

Example 2 Evaluate fke dx. Here, the limits of integration are given in
symbols; consequently, the result of integration is also in terms of those symbols:
h

fhke" dx = ke‘J =k(e" — eY)

a
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Example 3 Evaluate f 4( T+ x + 2x)dx, (x # — 1). The indefinite integral is
0

In |1 + x| + x? + ¢; thus the answer is

4
4/ 1 )

f( +2x)dx=[ln|1+x[+x]
0 1 +x 0

=(In5+ 16) — (In1 + 0)
=In5+ 16  [sincelnl = 0]

It is important to realize that the limits of integration a and b both refer to
values of the variable x. Were we to use the substitution-of-variables technique
(Rules VI and VII) during integration and introduce a variable, u, care should be
taken nor to consider a and b as the limits of u. The next example will illustrate
this point.

Example 4 Evaluate /(2x — 1)?*(6x?)dx. Let u=2x>—1; then du/dx =

6x2, or du = 6x? dx. Now notice that, when x = 1, u will be 1 but that, when
x =2, u will be 15; in other words, the limits of integration in terms of the
variable u should be 1 (lower) and 15 (upper). Rewriting the given integral in u

will therefore give us not f u® du but
1
s 141"
f wdu= —u’
1

3 = %(153 - 1°) = 11243

1

Alternatively, we may first convert u back to x and then use the original limits of
1 and 2 to get the identical answer:

[lzﬂ]“:ls - [1(2):3 - 1)3]’(=2 - L5 -y = 11242
3 3 13 ;

u=1

A Definite Integral as an Area Under a Curve

Every definite integral has a definite value. That value may be interpreted
geometrically to be a particular area under a given curve.

The graph of a continuous function y = f(x) is drawn in Fig. 13.1. If we seek
to measure the (shaded) area 4 enclosed by the curve and the x axis between the
two points a and b in the domain, we may proceed in the following manner. First,
we divide the interval [a, b] into »n subintervals (not necessarily equal in length).
Four of these are drawn in diagram a—that is, n = 4—the first being [x,, x,] and
the last, [x,, xs]. Since each of these represents a change in x, we may refer to
them as Ax,,..., Ax,, respectively. Now, on the subintervals let us construct four
rectangular blocks such that the height of each block is equal to the highest value
of the function attained in that block (which happens to occur at the left-side
boundary of each rectangle here). The first block thus has the height f(x,) and the
width Ax|, and, in general, the ith block has the height f(x;) and the width Ax,.


-Nimby-

-Nimby-
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The total area A* of this set of blocks is the sum

A% =Y f(x,)Ax, (n=4inFig. 13.1a)

i=1

This, though, is obviously nor the area under the curve we seek, but only a very
rough approximation thereof.

What makes A* deviate from the true value of A is the unshaded portion of
the rectangular blocks; these make A* an overestimate of 4. If the unshaded
portion can be shrunk in size and be made to approach zero, however, the
approximation value 4* will correspondingly approach the true value 4. This
result will materialize when we try a finer and finer segmentation of the interval
[a, b], so that n is increased and Ax; is shortened indefinitely. Then the blocks will
become more slender (if more numerous), and the protrusion beyond the curve
will diminish, as can be seen in diagram b. Carried to the limit, this “slenderizing”

A l V= X
Xy X, Xy X, Xg
(=a) >0 (=b)

Figure 13.1
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operation yields

(13.7) lim ) f(x,)Ax, = lim A* = area 4

n—0 ;) n— o

provided this limit exists. (It does in the present case.) This equation, indeed,
constitutes the formal definition of an area under a curve.
n

The summation expression in (13.7), 3 f(x,) Ax,, bears a certain resem-

1~l

blance to the definite integral expression f f(x) dx. Indeed, the latter is based on

the former. When the change Ax, is lnﬁthSImal we may replace it with the
symbol dx,. Moreover, the subscrlpt i may be dropped because each of these
infinitesimal changes can be equally well represented by the symbol dx. Thus we

may rewrite f(x,) Ax, into f(x) dx. What about the summation sign? The Y.
=1

notation represents the sum of a finire number of terms. When we let n — o0, and
take the limit of that sum, the regular notation for such an operation is rather

cumbersome. Thus a simpler substitute is needed. That substitute is f where the

elongated .S symbol also indicates a sum, and where ¢ and b (just as/ = 1 and »n)
serve to specify the lower and upper limits of this sum. In short the definite
integral is a shorthand for the limit-of-a-sum expression in (13.7). That is,

/f(x)dx— lim }:f(x Ax, = area 4

n—oo .
0 i

Thus the said definite integral (referred to as a Riemann integral) now has an area

I
connotation as well as a sum connotation, because _/ is the continuous counter-

a
n

part of the discrete concept of ) .

In Fig. 13.1, we attempted Ito lapproximate area A by systematically reducing
an overestimate A* by finer segmentation of the interval [a, b]. The resulting limit
of the sum of block areas is called the upper integral—an approximation from
above. We could also have approximated area 4 from below by forming rectangu-
lar blocks inscribed by the curve rather than protruding beyond it (see Exercise
13.3-3). The total area A** of this new set of blocks will underestimate 4, but as
the segmentation of [a, b] becomes finer and finer, we shall again find lim A4**

. . R R e

= A. The last-cited limit of the sum of block areas is called the lower integral. If,
and only if the upper integral and lower integral are equal in value then the
Riemann _integral f f(x)dx is defined, and the function f(x) is said to be
Riemann integrable. There exist theorems specifying the conditions under which a

function f(x) is integrable. According to the fundamental theorem of calculus, a
function is integrable in [qa, b] if it is continuous in that interval. As long as we
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Figure 13.2

are working with continuous functions, therefore, we should have no worries in
this regard.

Another point may be noted. Although the area 4 in Fig 13.1 happens to lie
entirely under a decreasing portion of the curve y = f(x), the conceptual equating
of a definite integral with an area is valid also for upward-sloping portions of the
curve. In fact, both types of slope may be present simultaneously; e.g.., we can

calculate ff(x) dx as the area under the curve in Fig. 13.1 above the line Ob.
0

i Note that, if we calculate the area B in Fig. 13.2 by the definite integral
f f(x)dx, the answer will come out negative, because the height of each
u
rectangular block involved in this area is negative. This gives rise to the notion of
a negative area, an area that lies below the x axis and above a given curve. In case

we are interested in the numerical rather than the algebraic value of such an area.
therefore, we should take the absolute value of the relevant definite integral. The

d . . T
area C = f f(x) dx, on the other hand, has a positive sign even though it lies in
.
the negative region of the x axis; this is because each rectangular block has a
positive height as well as a positive width when we are moving from ¢ to d. From

this, the implication is clear that interchange of the two limits of integration
would, by reversing the direction of movement, alter the sign of Ax;, anfli of the

definite integral. Applied to area B, we see that the definite integral f f(x)dx
b

(from b to a) will give the negative of the area B; this will measure the numerical
value of this area.

Some Properties of Definite Integrals

The discussion in the preceding paragraph leads us to the following property of
definite integrals.
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Property | The interchange of the limits of integration changes the sign of the
definite integral:

a b
[f(x) dx = —ff(x) dx
b a
This can be proved as follows:
a b
[ Fx) dx = F(a) = F(b) = = [F(6) = F(a)] = = [f(x) d
Definite integrals also possess some other interesting properties.

Property 11 A definite integral has a value of zero when the two limits of
integration are identical:

f“f(x) dx = F(a) - F(a) =0

Under the “area” interpretation, this means that the area (under a curve)
above any single point in the domain is nil. This 1s as it should be, because on top
of a point on the x axis, we can draw only a (one-dimensional) line, never a
(two-dimensional) area.

Property 111 A definite integral can be expressed as a sum of a finite number
of definite subintegrals as follows:

'/adf(x)dx=fuhf(x)dx+‘/:f(x)dx—k fcdf(x)dx (a<b<c<d)

Only three subintegrals are shown in this equation, but the extension to the
case of n subintegrals is also valid. This property is sometimes described as the
additivity property.

In terms of area, this means that the area (under the curve) lying above the
interval [a, d] on the x axis can be obtained by summing the areas lying above
the subintervals in the set {[a, b], [b, c], [c, d]). Note that, since we are dealing
with closed intervals, the border points b and ¢ have each been included in rwo
areas. Is this not double counting? It indeed is. But fortunately no damage is
done, because by Property II the area above a single point is zero, so that the
double counting produces no effect on the calculation. But, needless to say, the
double counting of any interval is never permitted.

Earlier, it was mentioned that all continuous functions are Riemann integra-
ble. Now, by Property 111, we can also find the definite integrals (areas) of certain
discontinuous functions. Consider the step function in Fig. 13.3a. In spite of the
discontinuity at point b in the interval [a, c], we can find the shaded area from the
sum

/ahf(x) dx + /:f(x) dx

The same also applies to the curve in diagram b.
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Figure 13.3

Property IV
/b - f(x)dx = —fhf(x) dx

Property V
fhkf(x) dx = k/hf(x) dx

Property V1
f:[f(x) +g(x)] dx = fabf(x) dx + /u”g(x) dx

Property VII (integration by parts) Given u(x) and v(x),
x=h x=h
- f © udv

These last four properties, all borrowed from the rules of indefinite integration,
should require no further explanation.

x=b
f vdu = uv

X=da

Another Look at the Indefinite Integral

We introduced the definite integral by way of attaching two limits of integration
to an indefinite integral. Now that we know the meaning of the definite integral,
let us see how we can revert from the latter to the indefinite integral.

Suppose that, instead of fixing the upper limit of integration at b, we allow it
to be a variable, designated simply as x. Then the integral will take the form

f:f(x)dx= F(x) - F(a)

which, now being a function of x, denotes a variable area under the curve of f(x).
But since the last term on the right is a constant, this integral must be a member
of the family of primitive functions of f(x), which we denoted earlier as F(x) + c.
If we set ¢ = — F(a), then the above integral becomes exactly the indefinite
integral [f(x) dx.
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From this point of view, therefore, we may consider the [ symbol to mean the

same as / . provided it is understood that in the latter version of the symbol the
a

lower limit of integration is related to the constant of integration by the equation
c= —F(a).

EXERCISE 13.3

1 Evaluate the following:
31 42
(a) '/; 7 X dx (d) L(x 6x°) dx

1 !
b *+6)d 24 bx+0)d
( )/(;X(X ) dx (e) '/;](ax x + ¢) dx

3 2 501
: 3Vxd ; ‘(— P4 l)d
(¢) /1 Vx dx N '/;x 3% x

2 Evaluazte the following: ,
72\’d 2\+ Yy d

(a) ./;e dx (¢) -/z(el e )1 x

e—2 X 6
(h) -/—l x+2 (d)./;(;+ l+x)dx

3 In Fig. 13.14, take the lowest value of the function attained in each subinterval as the
height of the rectangular block, i.e., take f(x,) instead of f(x,) as the height of the first
block, though still retaining Ax, as its width, and do likewise for the other blocks.

(a) Write a summation expression for the total area 4** of the new rectangles.

(b) Does A** overestimate or underestimate the desired area 4?

(¢) Would A4** tend to approach or to deviate further from A if a finer segmentation of
[a, b] were introduced? ( Hint: Try a diagram.)

(d) In the limit, when the number n of subintervals approaches oo, would the ap-
proximation value A** approach the true value 4, just as the approximation value 4* did?

(e) What can you conclude from the above about the Riemann integrability of the
function f(x) in the figure?

b
4 The definite integral / f(x) dx is said to represent an area under a curve. Does this

curve refer to the graph of the integrand f(x), or of the primitive function F(x)? If we
plot the graph of the F(x) function, how can we show the above definite integral on
it—by an area, a line segment, or a point?

5 Verify that a constant ¢ can be equivalently expressed as a definite integral:
bhe <
(a)c=fogdx (b)c=j(;1dt

13.4 IMPROPER INTEGRALS

Certain integrals are said to be “improper.” We shall briefly discuss two varieties
thereof.
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Infinite Limits of Integration

When we have definite integrals of the form
oc b
f f(x)dx  and f £(x) dx
a -

with one limit of integration being infinite, we refer to them as improper integrals.
In these cases, it is not possible to evaluate the integrals as, respectively,

F(ee) — F(a) and  F(b) — F(—o0)

because oo 1s not a number, and therefore it cannot be substituted for x in the
function F(x). Instead, we must resort once more to the concept of limits.

The first improper integral cited above can be defined to be the limit of
another (proper) integral as the latter’s upper limit of integration tends to oo; that
is.

(13.8) /ch(x)dXE lim fhf(x)dx

If this limit exists, the improper integral is said to be convergent (or to converge),
and the limiting process will yield the value of the integral. If the limit does not
exist, the improper integral is said to be divergent and is in fact meaningless. By
the same token, we can define

(13.8)) /” f(x)dx= lim fhf(x)dx

with the same criterion of convergence and divergence.

X2

bdx —1}” -1
= = — 4]

| ox? x|, b

«d .
Example 1 Evaluate f & First we note that
1

Hence, in line with (13.8), the desired integral is

* dx . bdx . —1
flv~2=llm -—2=11m(T+1)=l

X hb—>x Y] X h—

This improper integral does converge, and it has a value of 1.
Since the limit expression is cumbersome to write, some people prefer to omit
the “lim” notation and write simply

f°° dx -1 }
1ox? X
Even when written in this form, however, the improper integral should neverthe-
less be interpreted with the limit concept in mind.

Graphically, this improper integral still has the connotation of an area. But

since the upper limit of integration is allowed to take on increasingly larger values
in this case, the right-side boundary must be extended eastward indefinitely, as

=0+1=1
1
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Figure 13.4

shown in Fig. 13.44. Despite this, we are able to consider the area to have the
definite (limit) value of 1.

< dx
Example 2 Evaluate f g As before, we first find
1

=Inb—-Inl=1Inb

— =Inx

bdx b
| X

1
When we let b — oo, by (10.16") we have In b - oo. Thus the given improper
integral is divergent.

Figure 13.4b shows the graph of the function 1/x, as well as the area
corresponding to the given integral. The indefinite eastward extension of the
right-side boundary will result this time in an infinite area, even though the shape
of the graph displays a superficial similarity to that of diagram a.

What if both limits of integration are infinite? A direct extension of (13.8)
and (13.8) would suggest the definition

(13.8") ficf(x)dx=blim /hf(x)dx

— T X Yy
a— ~ o0

Again, this improper integral is said to converge if and only if the limit in
question exists.

Infinite Integrand

Even with finite limits of integration, an integral can still be improper if the
integrand becomes infinite somewhere in the interval of integration [a, b]. To
evaluate such an integral, we must again rely upon the concept of a limit.

11 . L .
Example 3 Evaluate / ;dx. This integral is improper because, as Fig. 13.46
0

shows, the integrand is infinite at the lower limit of integration (1/x — oo as
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x — 07). Therefore we should first find the integral

1
l%dx=lnx} =Inl-Ilna=—Ina [for a > 0]

a

and then evaluate its limit as a — 0*:

1
l%dxs lim [ —dx= lim (-Ina)

0 u—0" Vg X a—0*

Since this limit does not exist (as ¢ —» 0%, Ina - —o0), the given integral is
divergent.

9 —
Example 4 FEvaluate f x~ "2 dx. When x — 07, the integrand 1/ y/x becomes

infinite; the integral is improper. Again, we can first find

9
fgx‘l/zdx=2xl/2] =6—2Va

a a

The limit of this expression as ¢ = 0* is 6 — 0 = 6. Thus the given integral is
convergent (to 6).

The situation where the integrand becomes infinite at the upper limit of
integration is perfectly similar. It is an altogether different proposition, however,
when an infinite value of the integrand occurs in the open interval (a, b) rather
than at a or b. In this eventuality, it is necessary to take advantage of the
additivity of definite integrals and first decompose the given integral into subin-
tegrals. Assume that f(x) — oo as x — p, where p is a point in the interval (a, b);
then, by the additivity property, we have

/ahf(x) dx = /apf(x) dx + /phf(x) dx

The given integral on the left can be considered as convergent if and only if each
subintegral has a limit.

11 . . .
Example 5 Evaluate f ——3dx. The integrand tends to infinity when x ap-
-1x
proaches zero; thus we must write the given integral as the sum

flx*3dx=f0 x'3dx+flx*3dx (say, =1, + I,)
1 -1 0

The integral I, is divergent, because
. b . -1 b . 1
lim x*dx = lim [——x’z] = lim (— — 4 i) = — 0
b0~ p—o-L 2 “1 b0 20 2

Thus, we can conclude immediately, without having to evaluate 7,, that the given
integral is divergent.
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EXERCISE 134

1 Check the definite integrals given in Exercises 13.3-1 and 13.3-2 to determine whether
any of them is improper. If improper, indicate which variety of improper integral each
one is.

2 Which of the following integrals are improper, and why?

(a) f()ooe”’dl (¢) /le 23 dx (e) flsxd_xz
(b) f:wdx (d) /70 e di f) f:6dx

3 Evaluate all the improper integrals in the preceding problem.

4 Evaluate the integral 7, of Example 5, and show that it is also divergent.

5 (a) Graph the function y = ce ' for nonnegative ¢, (¢ > 0), and shade the area under
the curve.

(b) Write a mathematical expression for this area, and determine whether it is a finite
area.

13.5 SOME ECONOMIC APPLICATIONS OF INTEGRALS

Integrals are used in economic analysis in various ways. We shall illustrate a few
simple applications in the present section and then show the application to the
Domar growth model in the next.

From a Marginal Function to a Total Function

Given a total function (e.g., a total-cost function), the process of differentiation
can yield the marginal function (e.g., the marginal-cost function). Because the
process of integration is the opposite of differentiation, it should enable us,
conversely, to infer the total function from a given marginal function.

Example 1 If the marginal cost (MC) of a firm is the following function of
output, C(Q) = 2e%?¢, and if the fixed cost is Cr = 90, find the total-cost
function C(Q). By integrating C'(Q) with respect to Q, we find that

I e
(13.9) fze“Q dQ =255¢" + ¢ =10e°%¢ + ¢

This result may be taken as the desired C(Q) function except that, in view of the
arbitrary constant ¢, the answer appears indeterminate. Fortunately, the informa-
tion that C, = 90 can be used as an initial condition to definitize the constant.
When Q = 0, total cost C will consist solely of Cp. Setting O = 0 in the result of
(13.9), therefore, we should get a value of 90: that is, 10e” + ¢ = 90. But this
would imply that ¢ = 90 — 10 = 80. Hence, the total-cost function is

C(Q) = 10e°2¢ + 80
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Note that, unlike the case of (13.2), where the arbitrary constant ¢ has the same
value as the initial value of the variable H(0), in the present example we have
v = 80 but C(0) = Cr = 90, so that the two take different values. In general, it
should not be assumed that the arbitrary constant ¢ will always be equal to the
initial value of the total function.

Example 2 1f the marginal propensity to save (MPS) is the following function of
income, S’(Y)=10.3—0.1Y /2 and if the aggregate savings S is nil when
income Y is 81, find the saving function S(Y). As the MPS is the derivative of the
S function, the problem now calls for the integration of S(Y):

S(Y) = [(03-01y"2)dy =03y - 02V + ¢

The specific value of the constant ¢ can be found from the fact that S = 0 when
Y = 81. Even though, strictly speaking, this is not an initial condition (not
relating to Y = 0), substitution of this information into the above integral will
nevertheless serve to definitize ¢. Since

0=10.3(81)-0209)+c = c¢c=-225
the desired saving function is
S(Y)=03Y —-02Y"2-225

The technique illustrated in the above two examples can be extended directly
to other problems involving the search for total functions (such as total revenue,
total consumption) from given marginal functions. It may also be reiterated that
in problems of this type the validity of the answer (an integral) can always be
checked by differentiation.

Investment and Capital Formation

Capital formation is the process of adding to a given stock of capital. Regarding
this process as continuous over time, we may express capital stock as a function
of time, K(r), and use the derivative dK/dt to denote the rate of capital
formation.* But the rate of capital formation at time 7 is identical with the rate of
net investment flow at time ¢, denoted by I(¢). Thus, capital stock K and net
investment / are related by the following two equations:

dK
o I(1)

and K(r)=f1(z)dz=/‘2—1fdz=/d1<

* As a matter of notation, the derivative of a variable with respect to rime often is also denoted by
a dot placed over the variable, such as K = dK/dr. In dynamic analysis, where derivatives with respect
to time occur in abundance, this more concise symbol can contribute substantially to notational
simplicity. However, a dot. being such a tiny mark, is easily lost sight of or misplaced; thus. great care
is required in using this symbol.
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The first equation above is an identity; it shows the synonymity between net
investment and the increment of capital. Since I(z) is the derivative of K(¢), it
stands to reason that K(z) is the integral or antiderivative of /(¢), as shown in the
second equation. The transformation of the integrand in the latter equation is also
easy to comprehend: The switch from I to dK/dr is by definition, and the next
transformation is by cancellation of two identical differentials, i.e., by the
substitution rule.

Sometimes the concept of gross invesrment is used together with that of uet
investment in a model. Denoting gross investment by /, and net investment by 7,
we can relate them to each other by the equation

I, =1+38K

where & represents the rate of depreciation of capital and 8K, the rate of
replacement investment.

Example 3 Suppose that the net investment flow is described by the equation
I(t) = 3t'/? and that the initial capital stock, at time ¢ = 0, is K(0). What is the
time path of capital K? By integrating /(t) with respect to ¢z, we obtain

K(1)= f](t)dt= /3[‘/2dz= 203 + ¢

Next, letting r = 0 in the leftmost and rightmost expressions, we find K(0) = c.
Therefore, the time path of K is

(13.10)  K(r) =237+ K(0)

Observe the basic similarity between the resuits in (13.10) and in (13.2”).

The concept of definite integral enters into the picture when one desires to
find the amount of capital formation during some interval of time (rather than the
time path of K'). Since [I(1) dt = K (1), we may write the definite integral

b

[y ar = K(t)] — K(b) - K(a)
to indicate the total capital accumulation during the time interval [a, b]. Of
course, this also represents an area under the /(¢) curve. It should be noted,
however, that in the graph of the K(¢) function, this definite integral would
appear instead as a vertical distance— more specifically, as the difference between
the two vertical distances K(b) and K(a). (cf. Exercise 13.3-4.)

To appreciate this distinction between K(z) and I(¢) more fully, let us
emphasize that capital K is a srock concept, whereas investment [ is a flow
concept. Accordingly, while K(¢) tells us the amount of K existing at each point of
time, I(¢) gives us the information about the rare of (net) investment per year (or
per period of time) which is prevailing at each point of time. Thus, in order to
calculate the amount of net investment undertaken (capital accumulation), we
must first specify the length of the interval involved. This fact can also be seen
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when we rewrite the identity dK /dr = I(t) as dK = I(t) dt, which states that ¢k,
the increment in K, is based not only on I(r), the rate of flow, but also on dr, the
time that elapsed. It is this need to specify the time interval in the expression
I(t) dr that brings the definite integral into the picture, and gives rise to the area
representation under the /(¢)—as against the K(¢)—curve.

Example 4 1f net investment is a constant flow at /(z) = 1000 (dollars per year),
what will be the total net investment (capital formation) during a year, from ¢ = 0
to ¢ = 17 Obviously, the answer is $1000; this can be obtained formally as
follows:

1

1 1

f I(t) dt = f 10004 = 1000¢| = 1000

0 0 0
You can verify that the same answer will emerge if, instead, the year involved is
fromt=1tor=2.

Example 5 1If 1(¢) = 3t'/* (thousands of dollars per year)-—a nonconstant flow
—what will be the capital formation during the time interval {1, 4], that is, during
the second, third, and fourth years? The answer lies in the definite integral

4

f43z’/2 dr = 2:3/2] —16-2=14
1

1

On the basis of the preceding examples, we may express the amount of
capital accumulation during the time interval [0, 7], for any investment rate I(7),
by the definite integral

[1(e) de = K(r)}' — K(1) - K(0)

Figure 13.5 illustrates the case of the time interval [0, #,]. Viewed differently, the

[ I(t)

tO
f I(t)dt = K (ty) — K (0)
o

ok e e e e e
o~

]

Figure 13.5
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above equation yields the following expression for the time path K(t):
K(1) = K(0) + f’z(z) dr
0

The amount of K at any time ¢ is the initial capital plus the total capital
accumulation that has occurred since.

Present Value of a Cash Flow

Our earlier discussion of discounting and present value, limited to the case of a
single future value V, led us to the discounting formulas

A

It

V(1 +i) " [discrete case]
and A =Ve " [ continuous case]

Now suppose that we have a stream or flow of future values—a series of revenues
receivable at various times or of cost outlays payable at various times. How do we
compute the present value of the entire cash stream, or cash flow?

In the discrete case, if we assume three future revenue figures R, (1 = 1,2,3)
available at the end of the rth year and also assume an interest rate of ; per
annum, the present values of R, will be, respectively,

R(I+i" R+ RO+i:)°

It follows that the total present value is the sum

3
(13.11) O = Y R(1+i) "
=1
(I is the upper-case Greek letter pi, here signifying present.) This differs from the
single-value formula only in the replacement of V" by R, and in the insertion of
the ¥. sign.

The idea of the sum readily carries over to the case of a continuous cash flow,
but in the latter context the ¥ symbol must give way, of course, to the definite
integral sign. Consider a continuous revenue stream at the rate of R(rz) dollars per
year. This means that at ¢ = 7, the rate of flow is R(#,) dollars per year, but at
another point of time ¢ = ¢, the rate will be R(z,) dollars per year—with ¢ taken
as a continuous variable. If at any point of time ¢ we allow an infinitesimal time
interval dt to pass, the amount of revenue during the interval [z, 7 + dt] can be
written as R(r) dt [cf. the previous discussion of dK = I(t¢) dr]. When continu-
ously discounted at the rate of r per year, its present value should be R(r)e " dr.
If we let our problem be that of finding the total present value of a three-year
stream, our answer is to be found in the following definite integral:

(13.11) Tl = fR(z)e*”dz
0

This expression, the continuous version of the sum in (13.11), differs from the
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single-value formula only in the replacement of ¥ by R(¢) and in the appending
of the definite integral sign.*

Example 6 What is the present value of a continuous revenue flow lasting for y
years at the constant rate of D dollars per year and discounted at the rate of r per
year? According to (13.11"). we have

2 v —1 )
13.12 I1 = De "dtr =D ”dt=D[— ”]
( ) -/0 e '/()e e .

-D _ 1=y -D D .
- r - _ v v ) = = . ry
r ¢ }z=() r (6’ ) r (1 ¢ )

Thus, IT depends on D, r and y. If D = $3000, r = 0.06, and y = 2, for instance,
we have

0 .
1= %(1 — e *12) = 50.000(1 — 0.8869) = $5655  [approximately]

The value of II naturally is always positive: this follows from the positivity of D
and r, as well as (1 — e~ ™). (The number e raised to any negative power will
always give a positive fractional value, as can be seen from the second quadrant
of Fig. 10.3a.)

Example 7 In the wine-storage problem of Sec. 10.6, we assumed zero storage
cost. That simplifying assumption was necessitated by our ignorance of a way to
compute the present value of a cost flow. With this ignorance behind us, we are
now ready to permit the wine dealer to incur storage costs.

Let the purchase cost of the case of wine be an amount C, incurred at the
present time. Its (future) sale value. which varies with time, may be generally
denoted as V(r)—its present value being V(f)e ". Whereas the sale value
represents a single future value (there can be only one sale transaction on this
case of wine), the storage cost is a stream. Assuming this cost to be a constant
stream at the rate of s dollars per year. the total present value of the storage cost
incurred in a total of ¢ years will amount to

[serdr==2(1—e)  [ef (13.12)]
0 r

Thus the ner present value—what the dealer would seek to maximize—can be
expressed as

Ny = V(e "= 2(1—e ")~ C= [V(t) + ﬁ]e"” -2 ¢
which is an objective function in a single choice variable ¢.

* It may be noted that, whereas the upper summation index and the upper limit of intcgration are
identical at 3. the lower summation index | differs from the lower limit of integration 0. This is
because the first revenue in the discrete stream. by assumption, will not be forthcoming until 1 = 1
(end of first year), but the revenue flow in the continuous case is assumed to commence immediately
after 1 = 0.
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