CHAPTER

'WO
ECONOMIC MODELS

As mentioned before, any economic theory is necessarily an abstraction from the
real world. For one thing, the immense complexity of the real economy makes it
impossible for us to understand all the interrelationships at once; nor, for that
matter, are all these interrelationships of equal importance for the understanding
of the particular economic phenomenon under study. The sensible procedure is,
therefore, to pick out what appeal to our reason to be the primary factors and
relationships relevant to our problem and to focus our attention on these alone.
Such a deliberately simplified analytical framework is called an economic model,
since it is only a skeletal and rough representation of the actual economy.

2.1 INGREDIENTS OF A MATHEMATICAL MODEL

An economic model is merely a theoretical framework, and there is no inherent
reason why it must be mathematical. If the model is mathematical, however, it
will usually consist of a set of equations designed to describe the structure of the
model. By relating a number of variables to one another in certain ways, these
equations give mathematical form to the set of analytical assumptions adopted.
Then, through application of the relevant mathematical operations to these
equations, we may seek to derive a set of conclusions which logically follow from
those assumptions.
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Variables, Constants, and Parameters

A wvariable is something whose magnitude can change, i.e., something that can
take on different values. Variables frequently used in economics include price,
profit, revenue, cost, national income, consumption, investment, imports, exports,
and so on. Since each variable can assume various values, it must be represented
by a symbol instead of a specific number. For example, we may represent price by
P, profit by 7, revenue by R, cost by C, national income by Y, and so forth.
When we write P = 3 or C = 18, however, we are “freezing” these variables at
specific values (in appropriately chosen units).

Properly constructed, an economic model can be solved to give us the solution
values of a certain set of variables, such as the market-clearing level of price, or
the profit-maximizing level of output. Such variables, whose solution values we
seek from the model, are known as endogenous variables (originating from within).
However, the model may also contain variables which are assumed to be
determined by forces external to the model, and whose magnitudes are accepted
as given data only; such variables are called exogenous variables (originating from
without). It should be noted that a variable that is endogenous to one model may
very well be exogenous to another. In an analysis of the market determination of
wheat price ( P), for instance, the variable P should definitely be endogenous; but
in the framework of a theory of consumer expenditure, P would become instead a
datum to the individual consumer, and must therefore be considered exogenous.

Variables frequently appear in combination with fixed numbers or constants,
such as in the expressions 7P or 0.5R. A constant is a magnitude that does not
change and is therefore the antithesis of a variable. When a constant is joined to a
variable, it is often referred to as the coefficient of that variable. However, a
coefficient may be symbolic rather than numerical. We can, for instance, let the
symbol a stand for a given constant and use the expression ¢P in lieu of 7P in a
model, in order to attain a higher level of generality (see Sec. 2.7). This symbol a
is a rather peculiar case—it is supposed to represent a given constant, and yet,
since we have not assigned to it a specific number, it can take virtually any value.
In short, it is a constant that 1s variable! To identify its special status, we give it
the distinctive name parametric constant (or simply parameter).

It must be duly emphasized that, although different values can be assigned to
a parameter, it is nevertheless to be regarded as a datum in the model. It is for
this reason that people sometimes simply say “constant” even when the constant
Is parametric. In this respect, parameters closely resemble exogenous variables,
for both are to be treated as “givens” in a model. This explains why many writers.
for simplicity, refer to both collectively with the single designation “parameters.”

As a matter of convention, parametric constants are normally represented by
the symbols a, b, ¢, or their counterparts in the Greek alphabet: a, 8, and y. But
other symbols naturally are also permissible. As for exogenous variables, in order
that they can be visually distinguished from their endogenous cousins, we shall
follow the practice of attaching a subscript 0 to the chosen symbol. For example,
if P symbolizes price, then P, signifies an exogenously determined price.
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Equations and ldentities

Variables may exist independently, but they do not really become interesting until
they are related to one another by equations or by inequalities. At this juncture
we shall discuss equations only.

In economic applications we may distinguish between three types of equa-
tion: definitional equations, behavioral equations, and equilibrium conditions.

A definitional equation sets up an identity between two alternate expressions
that have exactly the same meaning. For such an equation, the identical-equality
sign = (read: “is identically equal to”) is often employed in place of the regular
equals sign =, although the latter is also acceptable. As an example, total profit is
defined as the excess of total revenue over total cost; we can therefore write

7T=R-C

A behavioral equation, on the other hand, specifies the manner in which a
variable behaves in response to changes in other variables. This may involve
either human behavior (such as the aggregate consumption pattern in relation to
national income) or nonhuman behavior (such as how total cost of a firm reacts to
output changes). Broadly defined, behavioral equations can be used to describe
the general institutional setting of a model, including the technological (e.g.,
production function) and legal (e.g., tax structure) aspects. Before a behavioral
equation can be written, however, it is always necessary to adopt definite
assumptions regarding the behavior pattern of the variable in question. Consider
the two cost functions

(2.1) C=75+10Q
(22) C=110+ Q?

where O denotes the quantity of output. Since the two equations have different
forms, the production condition assumed in each is obviously different from the
other. In (2.1), the fixed cost (the value of C when Q = 0) is 75, whereas in (2.2) it
is 110. The variation in cost is also different. In (2.1), for each unit increase in Q,
there is a constant increase of 10 in C. But in (2.2), as Q increases unit after unit,
C will increase by progressively larger amounts. Clearly, it is primarily through
the specification of the form of the behavioral equations that we give mathemati-
cal expression to the assumptions adopted for a model.

The third type of equations, equilibrium conditions, have relevance only if our
model involves the notion of equilibrium. If so, the equilibrium condition is an
equation that describes the prerequisite for the attainment of equilibrium. Two of
the most familiar equilibrium conditions in economics are

Q,= 0, [quantity demanded = quantity supplied]
and S=1 [intended saving = intended investment]

which pertain, respectively, to the equilibrium of a market model and the
equilibrium of the national-income model in its simplest form. Because equations
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of this type are neither definitional nor behavioral, they constitute a class by
themselves.

2.2 THE REAL-NUMBER SYSTEM

Equations and variables are the essential ingredients of a mathematical model.
But since the values that an economic variable takes are usually numerical, a few
words should be said about the number system. Here, we shall deal only with
so-called “real numbers.”

Whole numbers such as 1.2,3. ... are called positive integers; these are the
numbers most frequently used in counting. Their negative counterparts
— 1. =2, =3.... are called negative integers: these can be employed, for example.

to indicate subzero temperatures (in degrees). The number 0 (zero), on the other
hand. is neither positive nor negative. and is in that sense unique. Let us lump all
the positive and negative integers and the number zero into a single category.
referring to them collectively as the ser of all integers.

Integers. of course, do not exhaust all the possible numbers, for we have
fractions, such as 5. ;. and ;. which—if placed on a ruler-—would fall between
the integers. Also, we have negative fractions, such as — ¥ and — i. Together.
these make up the ser of all fractions.

The common property of all fractional numbers is that each is expressible as
a ratio of two integers; thus fractions qualify for the designation rational numbers
(in this usage, rational means ratio-nal). But integers are also rational. because
any integer n can be considered as the ratio n/1. The set of all integers and the set
of all fractions together form the ser of all rational numbers.

Once the notion of rational numbers is used, however, there naturally arises
the concept of irrational numbers—numbers that cannot be expressed as ratios of
a pair of integers. One example is the number V2 = 1.4142.... which is a
nonrepeating, nonterminating decimal. Another is the special constant 7 =
3.1415. .. (representing the ratio of the circumference of any circle to its diame-
ter). which is again a nonrepeating, nonterminating decimal, as is characteristic of
all irrational numbers.

Each irrational number. if placed on a ruler, would fall between two rational
numbers. so that, just as the fractions fill in the gaps between the integers on a
ruler. the irrational numbers fill in the gaps between rational numbers. The result
of this filling-in process is a continuum of numbers. all of which are so-called
“real numbers.” This continuum constitutes the ser of all real numbers. which is
often denoted by the symbol R. When the set R is displayed on a straight line (an
extended ruler). we refer to the line as the real line.

In Fig. 2.1 are listed (in the order discussed) all the number sets, arranged in
relationship to one another. If we read from bottom to top, however, we find in
effect a classificatory scheme in which the set of real numbers is broken down into
its component and subcomponent number sets. This figure therefore is a summary
of the structure of the real-number system.
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Integers —1 l‘ Fractions

Rational {rrational
numbers numbers

Real
numbers Figure 2.1

Real numbers are all we need for the first 14 chapters of this book, but they
are not the only numbers used in mathematics. In fact, the réason for the term
“real” is that there are also “imaginary” numbers, which have to do with the
square roots of negative numbers. That concept will be discussed later, in Chap.
15.

2.3 THE CONCEPT OF SETS

We have already employed the word “set” several times. Inasmuch as the concept
of sets underlies every branch of modern mathematics, it is desirable to familiarize
ourselves at least with its more basic aspects.

Set Notation

A set 1s simply a collection of distinct objects. These objects may be a group of
(distinct) numbers, or something else. Thus, all the students enrolled in a
particular economics course can be considered a set, just as the three integers 2, 3,
and 4 can form a set. The objects in a set are called the elements of the set,

There are two alternative ways of writing a set: by enumeration and by
description. If we let S represent the set of three numbers 2, 3, and 4, we can write,
by enumeration of the elements,

S=1{2,3.4)

But if we let / denote the set of all positive integers, enumeration becomes
difficult, and we may instead simply describe the elements and write

I = {x | x a positive integer}

which is read as follows: “I is the set of all (numbers) x, such that x is a positive
integer.” Note that braces are used to enclose the set in both cases. In the
descriptive approach, a vertical bar (or a colon) is always inserted to separate the
general symbol for the elements from the description of the elements. As another
example, the set of all real numbers greater than 2 but less than 5 (call it J) can
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be expressed symbolically as
J={x]2<x<5}

Here, even the descriptive statement is symbolically expressed.

A set with a finite number of elements, exemplified by set S above, is called a
Jinite set. Set I and set J, each with an infinite number of elements, are, on the
other hand, examples of an infinite set. Finite sets are always denumerable (or
countable), 1.e., their elements can be counted one by one in the sequence
1.2,3,... . Infinite sets may, however, be either denumerable (set I above), or
nondenumerable (set J above). In the latter case, there is no way to associate the
elements of the set with the natural counting numbers 1,2,3,..., and thus the set
is not countable.

Membership in a set is indicated by the symbol € (a variant of the Greek
letter epsilon € for “element”). which is read: “is an element of.” Thus, for the
two sets § and [ defined above., we may write

2eS 3e s el 9] (etc.)

but obviously 8 &€ S (read: “8 is not an element of set S7). If we use the symbol
R to denote the set of all real numbers, then the statement “x is some real
number” can be simply expressed by

xX€E€R

Relationships between Sets

When two sets are compared with each other, several possible kinds of relation-
ship may be observed. If two sets S, and S, happen to contain identical elements,

S, ={2.7.a,f) and S, ={2.a.7. 1)

then S, and §, are said to be equal (S, = §,). Note that the order of appearance
of the elements in a set is immaterial. Whenever even one element is different,
however, two sets are not equal.

Another kind of relationship is that one set may be a subser of another set. If
we have two sets

$=(1,3579 and T={3.7)

then 7 is a subset of S. because every element of T is also an element of S. A
more formal statement of this is: T is a subset of S if and only if “x € T implies
“x € 8.7 Using the set inclusion symbols C (is contained in) and O (includes),
we may then write

Trcs or SOT
It is possible that two given sets happen to be subsets of each other. When this

oceurs. however, we can be sure that these two sets are equal. To state this
formallv: we can have S, € §, and S, C S, if and only if S, = S,.
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Note that, whereas the € symbol relates an individual element to a set. the C
symbol relates a subset to a ser. As an application of this idea. we may state on the
basis of Fig. 2.1 that the set of all integers is a subset of the set of all rational
numbers. Similarly, the set of all rational numbers is a subset of the set of all real
numbers.

How many subsets can be formed from the five elements in the set S =
{(1,3,5,7,9)? First of all, each individual element of S can count as a distinct
subset of §, such as (1}, (3}, etc. But so can any pair, triple, or quadruple of these
elements, such as {1,3}. {1,5},....{(3.7.9). etc. For that matter, the set S itself
(with all 1ts five elements) can be considered as one of its own subsets—every
element of S is an element of S, and thus the set S itself fulfills the definition of a
subset. This is, of course, a limiting case. that from which we get the “largest”
possible subset of S, namely, S itself.

At the other extreme, the “smallest” possible subset of S is a set that contains
no element at all. Such a set is called the nuil set, or empty set, denoted by the
symbol & or { }. The reason for considering the null set as a subset of S is quite
interesting: If the null set is not a subset of S (¥ & §), then & must contain at
least one element x such that x &€ S. But since by definition the null set has no
element whatsoever, we cannot say that @ ¢ S: hence the null set is a subset of
S.

Counting all the subsets of S, including the two limiting cases S and @ . we
find a total of 2° = 32 subsets. In general, if a set has n elements, a total of 2"
subsets can be formed from those elements.*

It is extremely important to distinguish the symbol @ or { } clearly from the
notation {0}; the former is devoid of elements, but the latter does contain an
element, zero. The null set is unique; there is only one such set in the whole
world, and it is considered a subset of any set that can be conceived.

As a third possible type of relationship. two sets may have no elements in
common at all. In that case, the two sets are said to be disjoint. For example, the
set of all positive integers and the set of all negative integers are disjoint sets. A
fourth type of relationship occurs when two sets have some elements in common
but some elements peculiar to each. In that event, the two sets are neither equal
nor disjoint; also, neither set is a subset of the other.

Operations on Sets

When we add, subtract, multiply, divide, or take the square root of some
numbers, we are performing mathematical operations. Sets are different from

* Given a set with n clements {a. b, ..., n) we may first classify its subsets into two categories:
one with the clement « in it. and one without. Each of these two can be further classified into two
subcategories: one with the clement 4 in it, and one without. Note that by considering the second
clement h. we double the number of categories in the classification from 2 to 4 (= 22). By the same
token, the consideration of the element ¢ will increase the total number of categories to § (= 27),
When all n elements are considered. the total number of categories will become the total number of
subsets, and that number is 27
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numbers, but one can similarly perform certain mathematical operations on them.
Three principal operations to be discussed here involve the union, intersection,
and complement of sets.

To take the union of two sets 4 and B means to form a new set containing
those elements (and only those elements) belonging to 4, or to B, or to both 4
and B. The union set is symbolized by 4 U B (read: “A union B”).

Example I 1f A = (3,5,7) and B = {2,3,4,8), then
AUB=1{2,3,4,57.28}

This example illustrates the case in which two sets A and B are neither equal nor
disjoint and in which neither is a subset of the other.

Example 2 Again referring to Fig. 2.1, we see that the union of the set of all
integers and the set of all fractions is the set of all rational numbers. Similarly, the
union of the rational-number set and the irrational-number set yields the set of all
real numbers.

The intersection of two sets A and B, on the other hand, is a new set which
contains those elements (and only those elements) belonging to both A and B. The
intersection set is symbolized by 4 N B (read: ““A4 intersection B ™).

Example 3 From the sets A and B in Example 1, we can write
ANB={3

Example 4 1f A = {-3,6,10) and B = (9,2,7,4), then A " B= &. Set A and
set B are disjoint; therefore their intersection is the empty set—no element is
common to 4 and B.

It is obvious that intersection is a more restrictive concept than union. In the
former, only the elements common to A and B are acceptable, whereas in
the latter, membership in either A or B is sufficient to establish membership in the
union set. The operator symbols N and U -—which, incidentally, have the same
kind of general status as the symbols v . +. +. etc.—therefore have the
connotations “and” and “or,” respectively. This point can be better appreciated
by comparing the following formal definitions of intersection and union:

Intersection: ANB={x|x€dandx € B)

Union: AUB={x|x€ Aorx € B}

Before explaining the complement of a set, let us first introduce the concept of
universal set. In a particular context of discussion, if the only numbers used are
the set of the first seven positive integers, we may refer to it as the universal set,
U. Then, with a given set, say, 4 = {3.6,7). we can define another set 4 (read:
“the complement of 4”) as the set that contains all the numbers in the universal
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set U which are not in the set 4. That is.
A={(x|x€Uandx & A)={1.2.4.5)

Note that. whereas the symbol U has the connotation “or” and the symbol N
means “and.” the complement symbol ~ carries the implication of “not.”

Example 5 1f U ={5,6.7.8,9) and A = (5.6). then A = {7. 8.9).

Example 6 What is the complement of U? Since every object (number) under
consideration is included in the universal set, the complement of U must be
empty. Thus U = .

The three types of set operation can be visualized in the three diagrams of
Fig. 2.2. known as Venn diagrams. In diagram a, the points in the upper circle
form a set A. and the points in the lower circle form a set B. The union of A4 and
B then consists of the shaded area covering both circles. In diagram b are shown
the same two sets (circles). Since their intersection should comprise only the
points common to both sets. only the (shaded) overlapping portion of the two
circles satisfies the definition. In diagram c. let the points in the rectangle be the
universal set and let A be the set of points in the circle: then the complement set
A will be the (shaded) area outside the circle.

Laws of Set Operations

From Fig. 2.2, it may be noted that the shaded area in diagram « represents not
only A U B but also B U 4. Analogously, in diagram b the small shaded area is
the visual representation not only of 4 N B but also of B N A. When formalized.

Union Intersection Complement
~

AUB ANB A

.

(@) (b)

Figure 2.2
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this result is known as the commutative law (of unions and intersections):

AUB=BUA ANB=BNA
These relations are very similar to the algebraic lawsa + b =b +ganda X b =
b X a.

To take the union of three sets 4, B, and C, we first take the union of any two
sets and then “union” the resulting set with the third; a similar procedure is
applicable to the intersection operation. The results of such operations are
illustrated in Fig. 2.3. It is interesting that the order in which the sets are selected
for the operation is immaterial. This fact gives rise to the associative law (of
unions and intersections):

AU(BUC)=(AUB)UC
AN(BNnC)=(AnNnB)NC
These equations are strongly reminiscent of the algebraic laws a + (b + ¢) = (a
+b)+canda X (b X c¢)=(aXb)Xec.
There is also a law of operation that applies when unions and intersections
are used in combination. This is the distributive law (of unions and intersections):
AU(BNC)=(AUB)N (AU C)
AN(BUC)=(ANnB)u(4nC)
These resemble the algebraic law ¢ X (b + ¢) = (a X b) + (a X ¢).

Example 7 Verify the distributive law, given 4 = (4,5}, B ={3,6,7), and C =
(2,3}. To verify the first part of the law, we find the left- and right-hand
expressions separately:

Left: AU(BNC)={45 U3 ={3,45
Right: (AUB)N(AUC)=(3,4567TN{23,4.5 = (3,4,5
AUuBUC AN BNnC

1

(a)

Figure 2.3
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Since the two sides yield the same result, the law is verified. Repeating the
procedure for the second part of the law, we have

Left: AN(BUC)={45Nn{2.3.67)=2
Right: (ANBYU(ANC)=BUDB =0

Thus the law is again verified.

EXERCISE 2.3

1 Write the following in set notation:
(a) The set of all real numbers greater than 27.
(b) The set of all real numbers greater than 8 but less than 73.

2 Given the sets S, = (2,4,6), S, = (7,2,6}, S, = {4,2,6), and S, = (2,4}, which of the
following statements are true?

(a) §, =5, (dy3 ¢85 (g S, DS,

(b) S, =R (e) 4 &5, (hy 2 C S,

(¢) 5€5, (f) S, R () S 2.2

3 Referring to the four sets given in the preceding problem, find:
(¢) S US, () $5,N S, (e) S, NS, NS,
(b)y S, U S, (d) S, NS, (fYS;u S uUS,

4 Which of the following statements are valid?

(a) AUA=A (e) AN QG =0

(Y ANA=A4 (fHrAn U=4

(¢) AUD = A {g) The complement of 4 is A.
(dyAvU=U

5 Given A = {4,5.6), B ={(3.4,6,7), and C = {2.3.6), verify the distributive law.

6 Verify the distributive law by means of Venn diagrams, with different orders of
successive shading.

7 Enumerate all the subsets of the set {a. b. ¢}.

8 Fnumerate all the subsets of the set S =(1,3,5.7). How many subsets arc there
altogether?

9 Example 6 shows that @ is the complement of U. But since the null set is a subset of
any set, @ must be a subset of U. Inasmuch as the term “complement of U” implies the
notion of being nor in U, whereas the term “*subset of U™ implies the notion of being in U,
it seems paradoxical for @ to be both of these. How do you resolve this paradox?

2.4 RELATIONS AND FUNCTIONS

Our discussion of sets was prompted by the usage of that term in connection with
the various kinds of numbers in our number system. However. sets can refer as
well to objects other than numbers. In particular, we can speak of sets of
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