CHAPTER

THREE
EQUILIBRIUM ANALYSIS IN ECONOMICS

The analytical procedure outlined in the preceding chapter will first be applied to
what is known as static analysis. or equilibrium analysis. For this purpose. it is
imperative first to have a clear understanding of what “equilibrium™ means.

3.1 THE MEANING OF EQUILIBRIUM

Like any economic term, equilibrium can be defined in various ways. According to
one definition. an equilibrium is *“a constellation of selected interrelated variables
so adjusted to one another that no inherent tendency to change prevails in the
model which they constitute.”* Several words in this definition deserve special
attention. First, the word “selected”” underscores the fact that there do exist
variables which, by the analyst’s choice, have not been included in the model.
Hence the equilibrium under discussion can have relevance only in the context of
the particular set of variables chosen, and if the model is enlarged to include
additional variables, the equilibrium state pertaining to the smaller model will no
longer apply.

Second, the word “interrelated” suggests that, in order for equilibrium to
obtain. all variables in the model must simultaneously be in a state of rest.
Moreover, the state of rest of each variable must be compatible with that of every

* Fritz Machlup, *‘Equilibrium and Disequilibrium: Misplaced Concreteness and Disguised
Politics,” Economic Journal, March 1958, p. 9. (Reprinted in F. Machlup, Essays on Economic
Semantics, Prentice-Hall, Inc., Englewood Cliffs. N.J.. 1963.)
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36 STATIC (OR EQUILIBRIUM) ANALYSIS

other variable; otherwise some variable(s) will be changing, thereby also causing
the others to change in a chain reaction, and no equilibrium can be said to exist.

Third, the word “inherent” implies that, in defining an equilibrium, the state
of rest involved is based only on the balancing of the internal forces of the model,
while the external factors are assumed fixed. Operationally, this means that
parameters and exogenous variables are treated as constants. When the external
factors do actually change, there may result a new equilibrium defined on the
basis of the new parameter values, but in defining the new equilibrium, the new
parameter values are again assumed to persist and stay unchanged.

In essence, an equilibrium for a specified model is a situation that is
characterized by a lack of tendency to change. It is for this reason that the
analysis of equilibrium (more specifically, the study of what the equilibrium state
is like) is referred to as statics. The fact that an equilibrium implies no tendency
to change may tempt one to conclude that an equilibrium necessarily constitutes a
desirable or ideal state of affairs, on the ground that only in the ideal state would
there be a lack of motivation for change. Such a conclusion is unwarranted. Even
though a certain equilibrium position may represent a desirable state and some-
thing to be striven for—such as a profit-maximizing situation, from the firm’s
point of view—another equilibrium position may be quite undesirable and
therefore something to be avoided, such as an underemployment equilibrium level
of national income. The only warranted interpretation is that an equilibrium is a
situation which, if attained. would tend to perpetuate itself, barring any changes
in the external forces.

The desirable variety of equilibrium, which we shall refer to as goal equi-
librium, will be treated later in Parts 4 and 6 as optimization problems. In the
present chapter, the discussion will be confined to the nongoal type of equilibrium,
resulting not from any conscious aiming at a particular objective but from an
impersonal or suprapersonal process of interaction and adjustment of economic
forces. Examples of this are the equilibrium attained by a market under given
demand and supply conditions and the equilibrium of national income under
given conditions of consumption and investment patterns.

3.2 PARTIAL MARKET EQUILIBRIUM—A LINEAR MODEL

In a static-equilibrium model, the standard problem is that of finding the set of
values of the endogenous variables which will satisfy the equilibrium condition of
the model. This is because once we have identified those values, we have in effect
identified the equilibrium state. Let us illustrate with a so-called “partial-equi-
librium market model,” i.e., a model of price determination in an isolated market.

Constructing the Model

Since only one commodity is being considered, it is necessary to include only
three variables in the model: the quantity demanded of the commodity (Q,), the
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EQUILIBRIUM ANALYSIS IN ECONOMICS 37

quantity supplied of the commodity (Q,). and its price (P). The quantity is
measured, say, in pounds per week, and the price in dollars. Having chosen the
variables, our next order of business is to make certain assumptions regarding the
working of the market. First, we must specify an equilibrium condition—some-
thing indispensable in an equilibrium model. The standard assumption is that
equilibrium obtains in the market if and only if the excess demand is zero
(Q, — Q, = 0), that is, if and only if the market is cleared. But this immediately
raises the question of how Q, and Q| themselves are determined. To answer this,
we assume that Q, is a decreasing linear function of P (as P increases, Q,
decreases). On the other hand, Q, is postulated to be an increasing linear function
of P (as P increases, so does Q,), with the proviso that no quantity is supplied
unless the price exceeds a particular positive level. In all, then, the model will
contain one equilibrium condition plus two behavioral equations which govern
the demand and supply sides of the market, respectively.
Translated into mathematical statements, the model can be written as:

QdZQs
(3.1)  Q,=a-bP (a.b>0)
Q.= —c+dP (c.d>0)

Four parameters. a, b, ¢, and 4., appear in the two linear functions, and all of
them are specified to be positive. When the demand function is graphed, as in Fig.
3.1, its vertical intercept is at a and its slope is — b, which is negative, as required.
The supply function also has the required type of slope, d being positive, but its

Qa, Qs

Rq—a

(demand) Qi =-—c+dP

(supply)

|
|
|
)
P

Figure 3.1
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38 STATIC (OR EQUILIBRIUM) ANALYSIS

vertical intercept is seen to be negative, at —c¢. Why did we want to specify such a
negative vertical intercept? The answer is that, in so doing, we force the supply
curve to have a positive horizontal intercept at P,, thereby satisfying the proviso
stated earlier that supply will not be forthcoming unless the price is positive and
sufficiently high.

The reader should observe that. contrary to the usual practice, quantity rather
than price has been plotted vertically in Fig. 3.1. This, however, is in line with the
mathematical convention of placing the dependent variable on the vertical axis. In
a different context below, in which the demand curve is viewed from the
standpoint of a business firm as describing the average-revenue curve, AR = P =
£(0O,). we shall reverse the axes and plot P vertically.

With the model thus constructed, the next step is to solve it, i.e., to obtain the
solution values of the three endogenous variables, Q,. Q., and P. The solution
values, to be denoted Q,. Q. and P, are those values that satisfy the three
equations in (3.1) simultaneously; i.e., they are the values which, when substituted
into the three equations, make the latter a set of true statements. In the context of
an equilibrium model, those values may also be referred to as the equilibrium
values of the said variables. Since Q, = Q.. however, they can be replaced by a
single symbol Q. Hence, an equilibrium solution of the model may simply be
denoted by an ordered pair (P, Q). In case the solution is not unique, several
ordered pairs may each satisfy the system of simultaneous equations; there will
then be a solution set with more than one element in it. However, the multiple-
equilibrium situation cannot arise in a linear model such as the present one.

Solution by Elimination of Variables

One way of finding a solution to an equation system is by successive elimination
of variables and equations through substitution. In (3.1). the model contains three
equations in three variables. However, in view of the equating of Q, and Q, by
the equilibrium condition, we can let Q = Q, = Q_ and rewrite the model
equivalently as follows:

Q=a—-bP
(3.2)
Q=-c+dP

thereby reducing the model to two equations in two variables. Moreover, by
substituting the first equation into the second in (3.2), the model can be further
reduced to a single equation in a single variable:

a—bP = —c+dP

or, after subtracting (a + dP) from both sides of the equation and multiplying
through by —1,

(33) (b+d)P=a+c
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EQUILIBRIUM ANALYSIS IN ECONOMICS 39

This result is also obtainable directly from (3.1) by substituting the second and
third equations into the first.

Since b + d # 0, it is permissible to divide both sides of (3.3) by (b + d). The
result is the solution value of P:

a—+c¢

(34) P=—

Note that P is—as all solution values should be—expressed entirely in terms of
the parameters, which represent given data for the model. Thus P is a determinate
value, as it ought to be. Also note that P is positive—as a price should
be—because all the four parameters are positive by model specification.

To find the equilibrium quantity Q (= Q, = Q,) that corresponds to the
value P, simply substitute (3.4) into either equation of (3.2), and then solve the
resulting equation. Substituting (3.4) into the demand function, for instance, we

can get

_ b(a+c¢) alb+d)—bla+c) ad- bc
(3:5)  @=a-7mg = b+d T h+d

which is again an expression in terms of parameters only. Since the denominator
(b + d) is positive, the positivity of Q requires that the numerator (ad — bc) be
positive as well. Hence, to be economically meaningful, the present model should
contain the additional restriction that ad > bc.

The meaning of this restriction can be seen in Fig. 3.1. It is well known that
the P and Q of a market model may be determined graphically at the intersection
of the demand and supply curves. To have Q > 0 is to require the intersection
point to be located above the horizontal axis in Fig. 3.1, which in turn requires
the slopes and vertical intercepts of the two curves to fulfill a certain restriction
on their relative magnitudes. That restriction, according to (3.5), is ad > bc, given
that both b and d are positive.

The intersection of the demand and supply curves in Fig. 3.1, incidentally, is
in concept no different from the intersection shown in the Venn diagram of Fig,
2.2b. There is one difference only: instead of the points lying within two circles,
the present case involves the points that lic on two lines. Let the set of points on
the demand and supply curves be denoted, respectively, by D and S. Then, by
utilizing the symbol Q (= Q, = Q,), the two sets and their intersection can be
written

D={(P.Q)|Q=a—bP)
S={(P.Q)| Q= —c+dP)
and DnNS=(P.Q)

The intersection set contains in this instance only a single element, the ordered
pair (P, Q). The market equilibrium is unique.
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EXERCISE 3.2

1 Given the market model

0,= 0,
Q,=24-2P
Q.= —-5+17P

find P and Q by () elimination of variables and (b) using formulas (3.4) and (3.5). (Use
fractions rather than decimals.)

2 Let the demand and supply functions be as follows:
(a) Q,=51-3P by Q,=30-2P
Q,=6P—10 Q.= —6+5P
find P and Q by elimination of variables. (Use fractions rather than decimals.)

3 According to (3.5), for Q to be positive, it is necessary that the expression (ad — bc)
have the same algebraic sign as (b + d). Verify that this condition is indeed satisfied in the
models of the preceding two problems.

4 If (b+d)=0 in the linear market model, can an equilibrium sclution be found by
using (3.4) and (3.5)? Why or why not?

S5 1If (b+d)=0 in the linecar market model, what can you conclude regarding the
positions of the demand and supply curves in Fig. 3.1? What can you conclude, then,
regarding the equilibrium solution?

3.3 PARTIAL MARKET EQUILIBRIUM—A NONLINEAR MODEL

Let the linear demand in the isolated market model be replaced by a quadratic
demand function, while the supply function remains linear. Then, if numerical
coefficients are employed rather than parameters, a model such as the following
may emerge:

deQ\‘
(36) Q,=4- P?
0. —4r -1

As previously, this system of three equations can be reduced to a single equation
by elimination of variables (by substitution):

4—P2=4p 1
or
(3.7) P*+4P—5=0

This is a quadratic equation because the left-hand expression is a quadratic
function of variable P. The major difference between a quadratic equation and a
linear one is that, in general, the former will yield two solution values.
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Quadratic Equation versus Quadratic Function

Before discussing the method of solution, a clear distinction should be made
between the two terms quadratic equation and guadratic function. According to the
earlier discussion, the expression P2 + 4P — 5 constitutes a quadratic function.
say, f(P). Hence we may write

(3.8) f(P)=P*+4P -5

What (3.8) does is to specify a rule of mapping from P to f(P), such as
P }~-}—6‘—5’—4’-31—2’—1} 0] 1 2 |-
syl ol sl o8 -s[ o |7

Although we have listed only nine P values in this table, actually a// the P values
in the domain of the function are eligible for listing. It is perhaps for this reason
that we rarely speak of “solving” the equation f(P) = P? + 4P — 5, because we
normally expect “solution values” to be few in number, but here all P values can
get involved. Nevertheless, one may legitimately consider each ordered pair in the
table above—such as (—6,7) and (— 3, 0)—as a solution of (3.8), since each such
ordered pair indeed satisfies that equation. Inasmuch as an infinite number of
such ordered pairs can be written, one for each P value, there is an infinite
number of solutions to (3.8). When plotted as a curve, these ordered pairs
together yield the parabola in Fig. 3.2.

F(P)

f(P)y =P?4+4P 5

Figure 3.2
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In (3.7). where we set the quadratic function f( P) equal to zero, the situation
is fundamentally changed. Since the variable f( P) now disappears (having been
assigned a zero value), the result is a quadratic equation in the single variable P.*
Now that f( P) is restricted to a zero value, only a select number of P values can
satisfy (3.7) and qualify as its solution values, namely, those P values at which the
parabola in Fig. 3.2 intersects the horizontal axis—on which f(P) is zero. Note
that this time the solution values are just P values, not ordered pairs. The solution
P values are often referred to as the roots of the quadratic equation f(P) = 0, or,
alternatively, as the zeros of the quadratic function f(P).

There are two such intersection points in Fig. 3.2, namely, (1,0) and (-5, 0).
As required, the second element of each of these ordered pairs (the ordinate of the
corresponding point) shows f(P) = 0 in both cases. The first element of each
ordered pair (the abscissa of the point), on the other hand, gives the solution value
of P. Here we get two solutions,

}7]=1 and 1?2=—5

but only the first is economically admissible, as negative prices are ruled out.

The Quadratic Formula

Equation (3.7) has been solved graphically, but an algebraic method is also
available. In general, given a quadratic equation in the form

(3.9) ax?+bx+c=0 (a+0)

its two roots can be obtained from the quadratic formula:

_ —b+ (b - 4ac)'”

(3.10) X%, 5

This widely used formula is derived by means of a process known as
“completing the square.” First, dividing each term of (3.9) by a results in the
equation

where the + part of the + sign yields X, and the — part yields X,.

b c
x?+-x+—-=0
a a

Subtracting ¢/a from, and adding b’ /44a* to, both sides of the equation, we get

. b b? b? ¢
R T
4q®  4q’ a

* The distinction between quadratic function and quadratic equation just discussed can be
extended also to cases of polynomials other than quadratic. Thus, a cubic equation results when a
cubic function is set equal to zero.
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The left side is now a “perfect square,” and thus the equation can be expressed as
( . b )2 b* — dac
X P -
( 2a 4q°
or, after taking the square root on both sides,
b (= da)”
2a 2a

Finally, by subtracting b/2a from both sides, the result in (3.10) is evolved.
Applying the formula to (3.7), wherea = 1, b = 4, ¢ = —5, and x = P, the
roots are found to be

x +

_ -4+ (164+20)° —4+6

P, B = 5 =—5—=1-5
which check with the graphical solutions in Fig. 3.2. Again, we reject_ﬁ2 = —5o0n
economic grounds and, after omitting the subscript 1. write simply P = 1.

With this information in hand. the equilibrium quantity Q can readily be

found from either the second or the third equation of (3.6) to be Q = 3.

Another Graphical Solution

One method of graphical solution of the present model has been presented in Fig.
3.2. However, since the quantity variable has been eliminated in deriving the
quadratic equation, only P can be found from that figure. If we are interested in

(t)r/s (l) N

Figure 3.3
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finding P and Q simultaneously from a graph, we must instead use a diagram
with Q on one axis and P on the other, similar in construction to Fig. 3.1. This is
llustrated in Fig. 3.3. Our problem is of course again to find the intersection of
two sets of points, namely,

D={(P.Q)jQ=4-P)
and S=((P,Q)|Q=4P~ 1}

If no restriction is placed on the domain and the range, the intersection set will
contain two elements, namely,

DN S={(1.3),(=5 -21))

The former is located in quadrant I, and the latter (not drawn) in quadrant III. If
the domain and range are restricted to being nonnegative, however, only the first
ordered pair (1, 3) can be accepted. Then the equilibrium is again unique.

Higher-Degree Polynomial Equations

If a system of simultaneous equations reduces not to a linear equation such as
(3.3)* or to a quadratic equation such as (3.7) but to a cubic (third-degree
polynomial) equation or quartic (fourth-degree polynomial) equation, the roots
will be more difficult to find. One useful method which may work is that of
factoring the function. For example, the expression x? — x* — 4x + 4 can be
written as the product of three factors (x — 1), (x + 2), and (x — 2). Thus the
cubic equation

x}—x?-4x+4=0
can be written after factoring as

(x = D(x+2)(x=2)=0
In order for the left-hand product to be zero, at least one of the three terms in the
product must be zero. Setting each term equal to zero in turn, we get

x—1=0 or x+2=0 or x—2=0
These three equations will supply the three roots of the cubic equation, namely,
X =1 X, = — and ;=2

The trick is, of course, to discover the appropriate way of factoring. Unfor-
tunately, no general rule exists, and it must therefore remain a matter of trial and
error. Generally speaking, however, given an nth-degree polynomial equation
f(x) = 0, we can expect exactly » roots, which may be found as follows. First, try

to find a constant ¢, such that f(x) is divisible by (x + ¢;). The quotient
f(x)/(x + ¢,) will be a polynomial function of a lesser—(n — 1)st—degree; let

* Equation (3.3) can be viewed as the result of setting the linear function (b + d)P — (a + ¢)
equal to zero.
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us call it g(x). It then follows that

J(x) = (x+ ¢ )glx)

Now, try to find a constant ¢, such that g(x) is divisible by (x + ¢,). The
quotient g(x)/(x + ¢,) will again be a polynomial function of a lesser—this time
(n — 2)nd—degree, say. A(x). Since g(x) = (x + ¢,)h(x), it follows that

flx) = (x +¢)glx) = (x + ¢ )(x + ;) h(x)

By repeating the process, it will be possible to reduce the original nth-degree
polynomial f(x) to a product of exactly »n terms:

flx)=(x+c)x+c) (x+¢,)

which, when set equal to zero, will yield »n roots. Setting the first factor equal to
zero, for example, one gets X, = —c,. Similarly, the other factors will yield
X, = —c¢,, X; = —cy, etc. These results can be more succinctly expressed by
employing an index subscript i:

X = —c (i=1.,2,....n)

I {

Even though only one equation is written, the fact that the subscript i can take n
different values means that in all there are n equations involved. Thus the index
subscript provides a very concise way of statement.

EXERCISE 3.3

1 Find the zeros of the following functions graphically:
(a) f(x)= x>~ Tx + 10 (b) g(x)=2x>—4x-16

2 Solve the preceding problem by the quadratic formula.

3 Solve the following polynomial equations by factoring:
(a) PP+4P-5=0 [see(3.7)] () x'=7Tx’+ 14x-8=0
(by x’ +2x> —4x-8=0 (dy x* —3x"—4x =0

4 Find a cubic function with roots 7, —2, and 5.

5 Find the equilibrium solution for each of the following models:

(@) 0,=0Q, (b)) Q,=0,
Q,=3-pP° Q,=8—P°
Q,=6P—4 Q, =P -2

6 The market equilibrium condition, Q, = Q,, is often expressed in an equivalent
alternative form, @, — @, = 0, which has the economic interpretation “excess demand is
zero.” Does (3.7) represent this latter version of the equilibrium condition? If not, supply
an appropriate economic interpretation for (3.7).
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3.4 GENERAL MARKET EQUILIBRIUM

The last two sections dealt with models of an isolated market, wherein the Q, and
Q. of a commodity are functions of the price of that commodity alone. In the
actual world, though, no commodity ever enjoys (or suffers) such a hermitic
existence; for every commodity. there would normally exist many substitutes and
complementary goods. Thus a more realistic depiction of the demand function of
a commodity should take into account the effect not only of the price of the
commodity itself but also of the prices of most, if not all, of the related
commodities. The same also holds true for the supply function. Once the prices of
other commodities are brought into the picture, however, the structure of the
model itself must be broadened so as to be able to yield the equilibrium values of
these other prices as well. As a result, the price and quantity variables of multiple
commodities must enter endogenously into the model en masse.

In an isolated-market model, the equilibrium condition consists of only one
equation, Q,= Q_, or E=Q,—~ Q, =0, where E stands for excess demand.
When several interdependent commodities are simultaneously considered, equi-
librium would require the absence of excess demand for each and every commod-
ity included in the model, for if so much as one commodity is faced with an excess
demand, the price adjustment of that commodity will necessarily affect the
quantities demanded and quantities supplied of the remaining commodities,
thereby causing price changes all around. Consequently, the equilibrium condi-
tion of an n-commodity market model will involve n equations, one for each
commodity, in the form

(3.11)  E=0,-0,=0 (i=12....n)

If a solution exists, there will be a set of prices P, and corresponding quantities Q,
such that all the »n equations in the equilibrium condition will be simultaneously
satisfied.

Two-Commodity Market Model

To illustrate the problem, let us discuss a simple model in which only two
commodities are related to each other. For simpheity, the demand and supply
functions of both commodities are assumed to be linear. In parametric terms,
such a model can be written as

On—0yw=0
Qu=ay+aP +a,P
Q,=b,+bP +bP,
Qpn~—0n=0
Opn=0o,+a, P +a,P,
Q=B+ 5P+ 5P

(3.12)
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where the ¢ and b coefficients pertain to the demand and supply functions of the
first commodity. and the a and B coefficients are assigned to those of the second.
We have not bothered to specify the signs of the coefficients, but in the course of
analysis certain restrictions will emerge as a prerequisite to economically sensible
results. Also, in a subsequent numerical example, some comments will be made
on the specific signs to be given the coefficients.

As a first step toward the solution of this model, we can again resort to
elimination of variables. By substituting the second and third equations into the
first (for the first commodity) and the fifth and sixth equations into the fourth (for
the second commodity), the model is reduced to two equations in two variables:

(ag — by) + (a; = b)) Py + (ay — by) P, =0
(ag— By) + (& = B P + (ay — B)P, =0
These represent the two-commodity version of (3.11), after the demand and
supply functions have been substituted into the two equilibrium-condition equa-
tions.

Although this is a simple system of only two equations, as many as 12
parameters are involved, and algebraic manipulations will prove unwieldy unless

some sort of shorthand is introduced. Let us therefore define the shorthand
symbols

(3.13)

Cl = al - bl

(i=0,1,2)

YI = ai - :B:
Then (3.13) becomes—after transposing the ¢, and y, terms to the right-hand side
of the equals sign:

(3.13,) P+ Py= —¢,
"l b=

which may be solved by further elimination of variables. From the first equation.

it can be found that P, = —(¢, + ¢,P,)/c,. Substituting this into the second
equation and solving, we get
— Yy~ €
(3.14) P, = ¥ T Co¥a
OY2 — 6N

Note that P, is entirely expressed, as a solution value should be, in terms of the
data (parameters) of the model. By a similar process, the equilibrium price of the
second commodity is found to be

(3.15) }72 _ SN T Y

Y2 T 6N

For these two values to make sense, however, certain restrictions shouid be
imposed on the model. First, since division by zero is undefined, we must require
the common denominator of (3.14) and (3.15) to be nonzero. that is, ¢;v, # ¢,¥;-
Second, to assure positivity, the numerator must have the same sign as the
denominator.



48 STATIC (OR EQUILIBRIUM) ANALYSIS

The equilibrium prices having been found, the equilibrium quantities Q, and
Q_2 can readily be calculated by substituting (3.14) and (3.15) into the second (or
third) equation and the fifth (or sixth) equation of (3.12). These solution values
will naturally also be expressed in terms of the parameters. (Their actual calcula-
tion is left to you as an exercise.)

Numerical Example

Suppose that the demand and supply functions are numerically as follows:
Q= 10-2P + P,
Qsl = -2+ 3Pl

(3.16)
0,= 15+ P — P,

Q,=—1 +2P,

What will be the equilibrium solution?

Before answering the question, let us take a look at the numerical coefficients.
For each commodity, Q; is seen to depend on P, alone, but Q,, is shown as a
function of both prices. Note that while P, has a negative coefficient in Q,,, as we
would expect, the coefficient of P, is positive. The fact that a rise in P, tends to
raise Q,, suggests that the two commodities are substitutes for each other. The
role of P, in the @, function has a similar interpretation.

With these coefficients, the shorthand symbols ¢, and v, will take the following
values:

It

€y

10~(=2)=12 ¢=-2-3=-5 c¢,=1-0=1

I

Yo=15-(-1)=16 y,=1-0= y,=—-1-2= -3

By direct substitution of these into (3.14) and (3.15), we obtain

P =3=33 and P, =% =64

And the further substitution of P, and P, into (3.16) will yield
Q,=%=91 and 0, =%=124

Thus all the equilibrium values turn out posttive, as required. In order to preserve
the exact values of P, and P, to be used in the further calculation of @, and Q,, it
is advisable to express them as fractions rather than decimals.

Could we have obtained the equilibrium prices graphically? The answer is
yes. From (3.13), it 1s clear that a two-commodity model can be summarized by
two equations in two variables P, and P,. With known numerical coefficients,
both equations can be plotted in the P, P, coordinate plane, and the intersection
of the two curves will then pinpoint P, and P,.
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n-Commodity Case

The above discussion of the multicommodity market has been limited to the case
of two commodities, but it should be apparent that we are already moving from
partial-equilibrium analysis in the direction of general-equilibrium analysis. As
more commodities enter into a model, there will be more variables and more
equations, and the equations will get longer and more complicated. If all the
commodities in an economy are included in a comprehensive market model, the
result will be a Walrasian type of general-equilibrium model, in which the excess
demand for every commodity is considered to be a function of the prices of all the
commodities in the economy.

Some of the prices may, of course, carry zero coefficients when they play no
role in the determination of the excess demand of a particular commodity: e.g., in
the excess-demand function of pianos the price of popcorn may well have a zero
coefficient. In general, however, with n commodities in all, we may express the
demand and supply functions as follows (using Q,, and Q,, as function symbols
in place of fand g):

Qdi = Q(II(P|‘ PZ""’ Pn)
Q.\'l = QS((PI’ PZ""“ Pn)

In view of the index subscript, these two equations represent the totality of the 2n
functions which the model contains. (These functions are not necessarily linear.)
Moreover, the equilibrium condition is itself composed of a set of n equations,

(3.18) 0, -0.,=0 (i=12....n)

When (3.18) is added to (3.17), the model becomes complete. You should
therefore count a total of 3n equations.

Upon substitution of (3.17) into (3.18), however, the model can be reduced to
a set of n simultaneous equations only:

QdI(PI"PZ""’Pn)_Q.YI(PI‘PZ """ Pn): (i:172""’n)

Besides, inasmuch as E, = Q,, — Q,,. where E, is necessarily also a function of all
the n prices, the above set of equations may be written alternatively as

E(P.P,.....P)=0 (i=12....n)

(3.17)

Solved simultaneously, these n equations will determine the n equilibrium prices
P—if a solution does indeed exist. And then the Q, may be derived from the
demand or supply functions.

Solution of a General-Equation System

If a model comes equipped with numerical coefficients, as in (3.16), the equi-
librium values of the variables will be in numerical terms, too. On a more general
level, if a model is expressed in terms of parametric constants, as in (3.12), the
equilibrium values will also involve parameters and will hence appear as “for-
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mulas,” as exemplified by (3.14) and (3.15). If, for greater generality, even the
function forms are left unspecified in a model, however, as in (3.17), the manner
of expressing the solution values will of necessity be exceedingly general as well.

Drawing upon our experience in parametric models, we know that a solution
value is always an expression in terms of the parameters. For a general-function
model containing, say. a total of m parameters (a,. a,,. ... a,,)—where m is not
necessarily equal to n—the n equilibrium prices can therefore be expected to take
the general analytical form of

(3.19) P =P(a,.a,...., a,,) (i=1.2,....n)

This is a symbolic statement to the effect that the solution value of each variable
(here, price) is a function of the set of all parameters of the model. As this is a
very general statement, it really does not give much detailed information about
the solution. But in the general analytical treatment of some types of problem,
even this seemingly uninformative way of expressing a solution will prove of use,
as will be seen in a later chapter.

Writing such a solution is an easy task. But an important catch exists: the
expression in (3.19) can be justified if and only if a unique solution does indeed
exist, for then and only then can we map the ordered m-tuple (a,, a,..... a,,
into a determinate value for each price P. Yet, unfortunately for us, there is no a
priori reason to presume that every model will automatically yield a unique
solution. In this connection, it needs to be emphasized that the process of
“counting equations and unknowns” does not suffice as a test. Some very simple
examples should convince us that an _egual number of eqnations and unknowns
(endogenous variables) does not necessarily guarantee the existence of a unigue
solution.

Consider the three simultaneous-equation systems

(32 ¥ »=8
x+ y=9
2x+ y=12

(3.21) 4x +2y =24
2x + 3y = 58

(3.22) y=18
x+ y=20

In (3.20), despite the fact that two unknowns are linked together by exactly two
equations, there is nevertheless no solution. These two equations happen to be
inconsistent, for if the sum of x and y is 8, it cannot possibly be 9 at the same
time. In (3.21), another case of two equations in two variables, the two equations
are functionally dependent, which means that one can be derived from (and is
implied by) the other. (Here, the second equation is equal to two times the first
equation). Consequently, one equation is redundant and may be dropped from
the system, leaving in effect only one equation in two unknowns. The solution will
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then be the equation y = 12 — 2x, which yields not a unique ordered pair (X, 7)
but an infinite number of them, including (0, 12), (1, 10), (2, 8), etc., all of which
satisfy that equation. Lastly, the case of (3.22) involves more equations than
unknowns, yet the ordered pair (2, 18) does constitute the unique solution to it.
The reason is that, in view of the existence of functional dependence among the
equations (the first is equal to the second plus twice the third), we have in effect
only two independent, consistent equations in two variables.

These simple examples should suffice to convey the importance of consistency
and functional independence as the two prerequisites for application of the process
of counting equations and unknowns. In general, in order to apply that process,
make sure that (1) the satisfaction of any one equation in the model will not
preclude the satisfaction of another and (2) no equation is redundant. In (3.17),
for example, the » demand and n supply functions may safely be assumed to be
independent of one another, each being derived from a different source—each
demand from the decisions of a group of consumers, and each supply from the
decisions of a group of firms. Thus each function serves to describe one facet of
the market situation, and none is redundant. Mutual consistency may perhaps
also be assumed. In addition, the equilibrium-condition equations in (3.18) are
also independent and presumably consistent. Therefore the analytical solution as
written in (3.19) can in general be considered justifiable.*

For simultaneous-equation models, there exist systematic methods of testing
the existence of a unique (or determinate) solution. These would involve, for
linear models, an application of the concept of determinants. to be introduced in
Chap. 5. In the case of nonlinear models. such a test would also require a
knowledge of so-called “partial derivatives” and a special type of determinant
called the Jacobian determinant, which will be discussed in Chaps. 7 and 8.

EXERCISE 3.4

1 Work out the step-by-step solution of (3.13"), thereby verifying the results in (3.14) and
(3.15).

2 Rewrite (3.14) and (3.15) in terms of the original parameters of the model in (3.12).
3 The demand and supply functions of a two-commodity market model are as follows:
Q.= 18-3P + P, Qp= 12+P — 2P,
Q,=-2+14p Qo= -2 + 3P,
Find P, and Q, (i = 1,2). (Use fractions rather than decimals.)

* This is essentially the way that Leon Walras approached the problem of the existence of a
general market equilibrium. In the modern literature, there can be found a number of sophisticated
mathematical proofs of the existence of a competitive market equilibrium under certain postulated
economic conditions. But the mathematics used is advanced. The easiest one to understand is perhaps
the proof given in Robert Dorfman. Paul A. Samuelson, and Robert M. Solow, Linear Programming
and Economic Analvsis. McGraw-Hill Book Company, New York. 1958, chapter 13, which you should
read afrer having studied Part 6 of the present volume.
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