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(3.24) and (3.25) must be positive. Since the exogenous expenditures I, and G, are
normally positive, as is the parameter a (the vertical intercept of the consumption
function), the sign of the numerator expressions will work out, too.

As a check on our calculation, we can add the C expression in (3.25) to
(I, + G,) and see whether the sum is equal to the Y expression in (3.24). If so,
the C and Y values do satisfy the equilibrium condition, and the solution is valid.

This model is obviously one of extreme simplicity and crudity, but other
models of national-income determination, in varying degrees of complexity and
sophistication, can be constructed as well. In each case, however, the principles
involved in the construction and analysis of the model are identical with those
already discussed. For this reason, we shall not go into further illustrations here.
A more comprehensive national-income model, involving the simultaneous equi-
librium of the money market and the goods market, will be discussed in Sec. 8.6
below.

EXERCISE 3.5

1 Given the following model:
Y=C+1,+ G,
C=a+b(Y~-T) (a>0, 0<b<D [T: taxes]
T=d+1Y (d>0, 0<it< [#: income tax rate]
(a) How many endogenous variables are there?
(b) Find ¥, T, and C.

2 Let the national-income model be:

Y=C+1I,+G
C=a+ WY -Ty) (a>0, 0<h<
G=gY OD<g<l

(a) Identify the endogenous variables.

(b) Give the economic meaning of the parameter g.

(¢) Find the equilibrium national income.

(d) What restriction on the parameters is needed for a solution to exist?

3 Find Y and C from the following:
Y=C+1I,+ G,
C=25+6Y2
I, =16
G, = 14




CHAPTER

FOUR
LINEAR MODELS AND MATRIX ALGEBRA

For the one-commodity model (3.1), the solutions P and Q as expressed in (3.4)
and (3.5) are relatively simple, even though a number of parameters are involved.
As more and more commodities are incorporated into the model, such solution
formulas quickly become cumbersome and unwieldy. That was why we had to
resort to a little shorthand, even for the two-commodity case—in order that the
solutions (3.14) and (3.15) can still be written in a relatively concise fashion. We
did not attempt to tackle any three- or four-commodity models, even in the linear
version, primarily because we did not yet have at our disposal a method suitable
for handling a large system of simultaneous equations. Such a method is found in
matrix algebra, the subject of this chapter and the next.

Matrix algebra can enable us to do many things. In the first place, it provides
a compact way of writing an equation system, even an extremely large one.
Second, it leads to a way of testing the existence of a solution by evaluation of a
determinant—a concept closely related to that of a matrix. Third, it gives a
method of finding that solution (if it exists). Since equation systems are encoun-
tered not only in static analysis but also in comparative-static and dynamic
analyses and in optimization problems, you will find ample application of matrix
algebra in almost every chapter that is to follow.

However, one slight “catch” should be mentioned at the outset. Matrix
algebra is applicable only to linear-equation systems. How realistically linear
equations can describe actual economic relationships depends, of course, on the
nature of the relationships in question. In many cases, even if some sacrifice of
realism is entailed by the assumption of linearity, an assumed linear relationship
can produce a sufficiently close approximation to an actual nonlinear relationship
to warrant its use. In other cases, the closeness of approximation may also be
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/‘\ Nonlinear curve

Figure 4.1

improved by having a separate linear approximation for each segment of a
nonlinear relationship, as is illustrated in Fig. 4.1. If the solid curve is taken as the
actual nonlinear relationship, a single linear approximation might take the form
of the solid straight line, which shows substantial deviation from the curve at
certain points. But if the domain is divided into three regions r,, r,, and r,, we can
have a much closer linear approximation (broken straight line) in each region.

In yet other cases, while preserving the nonlinearity in the model, we can
effect a transformation of variables so as to obtain a linear relation to work with.
For example, the nonlinear function

y = ax?

can be readily transformed, by taking the logarithm on both sides, into the
function

A

log y =loga + blog x

which is linear in the two variables (log y) and (log x). (Loganthms will be
discussed in detail in Chap. 10.)

In short, the linearity assumption frequently adopted in economics may in
certain cases be quite reasonable and justified. On this note, then, let us proceed
to the study of matrix algebra.

4.1 MATRICES AND VECTORS

The two-commodity market model (3.12) can be written—after eliminating the
quantity variables—as a system of two linear equations, as in (3 137,

P+ c,Py= —¢, !

WP+ vnPh= -y
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where the parameters ¢, and y, appear to the right of the equals sign. In general, a
system of m linear equations in » variables (x,, x,,..., x,,) can also be arranged
into such a format:

anx, ta,x,+---+a,x,=d,
(4.1) AyX, *+ay x,+---+a,,x,=d,
QX+ AppXy + -+ a,,x,=d,

In (4.1), the variable x, appears only within the leftmost column, and in general
the variable x; appears only in the jth column on the left side of the equals sign.
The double-subscripted parameter symbol a;; represents the coefficient appearing
in the ith equation and attached to the jth variable. For example, a,, is the
coefficient in the second equation, attached to the variable x,. The parameter d,
which is unattached to any variable, on the other hand, represents the constant
term in the ith equation. For instance, d, is the constant term in the first
equation. All subscripts are therefore keyed to the specific locations of the
variables and parameters in (4.1).

Matrices as Arrays

There are essentially three types of ingredients in_the equation system (4.1). The
first is the set of coefficients a, P the second is the set of variables x,,..., x,; and
the last is the set of constant terms d,,..., d,,. If we arrange the three sets as
three rectangular arrays and label them, respectively, as 4, x, and d (without

subscripts), then we have

x, d
ay  dp a, X dl
ay axp a, 2 2
(4.2) A= n x = d=
. aml am2 U amn . xn dm

As a simple example, given the linear-equation system
6x; +3x, + xy=22
(4.3) xp+4x, —2x;=12
4x, — x,+ 5x;=10

we can write

6 3 1 x 2
(44 4=|(1 4 -2 x =X d=|12 -
4 -1 5 X 10

Each of the three arrays in (4.2) or (4.4) constitutes a matrix.
A_matrix_is defined as a rectangular array of numbers, parameters, or
variables. The members of the array, referred to as the elements of the matrix, are
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usually enclosed in brackets, as in (4.2), or sometimes in parentheses or with
double vertical lines: || |. Note that in matrix A (the coefficient matrix of the
eqguation system), the elements are separated not by commas but by blank spaces
only. As a shorthand device, the array in matrix 4 can be written more simply as

A=a] i=1,2,...,m
=14y j=12,...,n

Inasmuch as the location of each element in a matrix is unequivocally fixed by the
subscript, every matrix is an ordered set.

Vectors as Special Matrices

The number of rows and the number of columns in a matrix together define the
dimension of the matrix. Since matrix A4 in (4.2) contains m rows and »n columns, it
is said to be of dimension m X n (read: “m by n”). It is important to remember
that the row number always precedes the column number; this is in line with the
way the two subscripts in a;; are ordered. In the special case where m = n, the
matrix is called a square matrix; thus the matrix 4 in (4.4) is a 3 X 3 square
matrix. '
Some matrices may contain only one column, such as x and 4 in (4.2) or (4.4).
Such matrices are given the special name column vectors. In (4.2), the dimension
of x is n X 1, and that of d is m X 1; in (4.4) both x and 4 are 3 X 1. If we
arranged the variables x; in a horizontal array, though, there would resulta 1 X n_

matrix, which is called a row vector. For notation purposes, a row vector is often

3

distinguished from a column vector by the use of a primed symbol:
i i Atttk
x=Ix x, 0 x,]
You may observe that a vector (whether row or column) is merely an ordered
n-tuple, and as such it may be interpreted as a point in an n#-dimensional space. In
turn, the m X n matrix A4 can be interpreted as an ordered set of m row vectors or
as an ordered set of n column vectors. These ideas will be followed up later.
An issue of more immediate interest is how the matrix notation can enable us,
as promised, to express an equation system in a compact way. With the matrices
defined in (4.4), we can express the equation system (4.3) simply as

’ Ax=d |

In fact, if A, x, and d are given the meanings in (4.2), then even the general-equa-
tion system in (4.1) can be written as Ax = d. The compaﬁness.oﬁhmnolatmnis
thus unmistakable.

However, the equation Ax = d prompts at least two questions. How do we
multiply two matrices 4 and x? What is meant by the equality of Ax and d? Since
matrices involve whole blocks of numbers, the familiar algebraic operations
defined for single numbers are not directly applicable, and there is need for a new
set of operational rules.
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EXERCISE 4.1

1 Rewrite the equation system (3.1) in the format of (4.1), and show that, if the three
variables are arranged in the order Q,, Q., and P, the coefficient matrix will be

I -1 0
1 0 b
0 I —-d $

How would you write the vector of constants?

2 Rewrite the equation system (3.12) in the format of (4.1) with the variables arranged in
the following order: Q,, Q,, Qys, Qss, P;, P,. Write out the coefficient matrix, the
variable vector, and the constant vector.

4.2 MATRIX OPERATIONS

As a preliminary, let us first deﬁne the word equality. Two matrices A = [4,;] and

= [b,;] are said to be equal if and only if they have the same dlmen51on and
have identical elements in the correspondmg locations in the array. In other
words, A = B if and only if a,, = b, ; for all values of i and j. Thus, for example,
we find

HEE M

As another example, if [ y] = [ 4], this will mean that x = 7 and y = 4.

Addition and Subtraction of Matrices

Two matrices can be added if and only if they have the same dimension. When
this dimensional requirement is met, the matrices are said to be conformable for
addition. In that case, the addition of 4 = [a;;] and B = [b;;] is defined as the
addition of each pair of corresponding elements

Example 1 .
[ 4 9] + ] 4+2 940 [6 9]
2 1 2+ 0 1+7 2 8
Example 2
[a), a, ] by by ay +by aptb, Vs
dy  ap|+|by by|=|ay+by aytby, C
| 431 a4y by by ay + by ay + by,
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In general, we may state the rule thus:

[a,] + [b,-j-] =[c;;] wherec,; = a,; + b,
Note that the sum matrix [c,;] must have the same dimension as the component
matrices [a,;] and [b,].

The subtraction operation A — B can be similarly defined if and only if 4

and B have the same dimension. The operation entails the result

[a,] - [b;] = [d;] whered, =a,; b,

Example 3

[19 3 _[6 8]=[19—6 3-8 =[13 —5]
2 0 1 3 2-1 0-3 1 -3
The subtraction operation A — B may be considered alternatively as an addition
operation involving a matrix A and another matrix (— 1) B. This, however, raises

the question of what is meant by the multiplication of a matrix by a single
number (here, — 1).

Scalar Multiplication

To multiply a matrix by a number—or in matrix-algebra terminology, by a scalar
—1s to multiply every element of that matrix by the given scalar.

Example 4
7[3 -1] _ [21 -7]
0 5 0 35
Example 5
1

1 1
Ien an}_ 290 2412

1 1
2|ay ay 2@y 24y

From these examples, the rationale of the name scalar should become clear,
for it “scales up (or down)” the matrix by a certain multiple. The scalar can, of
course, be a negative number as well.

Example 6
[a“ ay; dl] [—a” —ap —d,]
-1 =
ay ap d, —a; —a, —d,

Note that if the matrix on the left represents the coefficients and the constant
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terms in the simultaneous equations
ayx) +apx; =d,
ayx; +apx; =d,

then multiplication by the scalar —1 will amount to multiplying both sides of
both equations by — 1, thereby changing the sign of every term in the system.

Multiplication of Matrices

Whereas a scalar can be used to multiply a matrix of any dimension, the

multiplication of two matrices is contingent upon the satisfaction of a different

dimensional requirement.

Suppose that, given two matrices 4 and B, we want to find the product 4B.
The conformability condition for multiplication is that the column dimension of 4 _
(the “lead” matrix in the expression 48) must be equal to the row dimension of
B (the “lag” matrix). For instance, if

o z[bn by, b13]

4.5 A =la, a,| 1 B
(4.5) (%2 [Il ,12]’ %3 by, by by

the product 4B then is defined, since 4 has two columns and B has rwo
rows—premsely the same number.* This can be checked at a glance by comparing
the second number in the dimension indicator for 4, which is (1 x 2), with the -
first number in the dimension indicator for B, (2 X 3). On the other hand, the
reverse product BA is not defined in this case, because B (now the lead matrix) has
three columns while 4 (the lag matrix) has only one row; hence the conformability
condition is violated.

In general, if 4 is of dimension m X n and B is of dimension p X ¢, the
matrix product 4B will be defined if and only if » = p. If defined, moreovVer, the
product matrix AB will have the dimension m X g—the same number of rows as
the lead matrix 4 and the same number of columns as the lag matrix B. For the
matrices given in (4.5), AB will be 1 X 3.

It remains to define the exact procedure of multiplication. For this purpose,
let us take the matrices 4 and B in (4.5) for illustration. Since the product 4B is
defined and is expected to be of dimension 1 X 3, we may write in general (using
the symbol C rather than ¢’ for the row vector) that

AB=C=[C|1 (4] C|3]

Each element in the product matrix C, denoted by c,;, is defined as a sum of
products, to be computed from the elements in the ith row of the lead matrix 4,
and those in the jth column of the lag matrix B. To find c,,, for instance, we
should take the first row in A (since i = 1) and the first column in B (since j = 1)

* The matrix 4, being a row vector, would normally be denoted by a’. We use the symbol 4 here
to stress the fact that the multiplication rule being explained applies to matrices in general, not only to
the product of one vector and one matrix.
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First pair

Second pair

First pair

For ¢y5:

Second pair

Figure 4.2

—as shown in the top panel of Fig. 4.2—and then pair the elements together
sequentially, multiply out each pair, and take the sum of the resulting products, to
get

(4-6) cn = apby + apby,

Similarly, for c,,, we take the first row in A (since i = 1) and the second column in
B (since j = 2), and calculate the indicated sum of products—in accordance with
the lower panel of Fig. 4.2—as follows:

(4.6') €1 = apbyy + apby,
By the same token, we should also have
(4.6”) €3 =apbys + apby

It is the particular pairing requirement in this process which necessitates the
matching of the column dimension of the lead matrix and the row dimension of
the lag matrix before multiplication can be performed.

The multiplication procedure illustrated in Fig. 4.2 can also be described by
using the concept of the inner product of two vectors. Given two vectors # and v
with n elements each, say, (u;, 45,..., u,) and (v,, v,,..., v,), arranged either as
two rows or as two columns or as one row and one column, their inner product,
written as u - v, is defined as ‘

urv=uv; + U, +- - +uy,

This is a sum of products of corresponding elements, and hence the inner product
of two vectors is a scalar. If, for instance, we prepare after a shopping trip a
vector of quantities purchased of n goods and a vector of their prices (listed in the
corresponding order), then their inner product will give the total purchase cost.
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Note that the inner-product concept is exempted from the conformability condi-
tion, since the arrangement of the two vectors in rows or columns is immaterial.
Using this concept, we can describe the element ¢, in the product matrix
C = AB simply as the inner product of the ith row of the lead matrix 4 and the
Jth column of the lag matrix B. By examining Fig. 4.2, we can easily verify the
“validity of this description.
The rule of multiplication outlined above applies with equal validity when the
dimenstons of A and B are other than those illustrated above; the only prere-
quisite is that the conformability condition be met.

Example 7 Given
3 5 -1 0
(2132) [4 6] an 2x2) [ 4 7]
find AB. The product AB is obviously defined, and will be 2 X 2:
3(=1)+5(4) 3(0)+5(7)] _ [17 35]

A= - +64) 40)+6(7)| |20 2

Example 8 Given

1 3 5
A =12 8 and b = [ ] ix7
(3x2) 4 0 @x1 9

find Ab. This time the product matrix should be 3 X 1, that is, a column vector:
1(5) + 3(9) 32
Ab=1[2(5)+8(9) | =182
4(5) +0(9) 20

Example 9 Given

3 -1 2 0o -1 &

A |1 0 3 and B =|-1 1 &
(3x3) (3x3)

4 0 2 0 2 -

find AB. The same rule of multiplication now yields a very special product
matrix:

0+14+0 —-3i-4i+¢ LZ-%-3 1 0 0
AB=|0+0+0 —i4+0+¢% Z+0-3|=]0 1 0
0+0+0 —-%+0+% 210-3% 0 0 1

This last matrix—a square matrix with Is in its principal diagonal (the diagonal
running from northwest to southeast) and Os everywhere else—exemplifies the

important type of matrix known ag idensity garriy, This will be further discussed
below.
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Example 10 Let us now take the matrix 4 and the vector x as defined in (4.4)
and find Ax. The product matrix is a 3 X 1 column vector:

6 3 IHXI} 6x, + 3x, + x;

Ax =11 4 =2]1x2 X, + 4x, — 2x,4
4 -1 S11%3 4x, — x5 + 5x;
B3xX3 3xD 3xD

Repeat: the product on the right is a column vector, its corpulent appearance
notwithstanding! When we write Ax = d, therefore, we have

6x, + 3x, + x, 22
X, +dx, —2x; | =12
4x, — x5+ 5x,4 10

which, according to the definition of matrix equality, is equivalent to the state-
ment of the entire equation system in (4.3).

Note that, to use the matrix notation 4x = d, it is necessary, because of the
conformability condition, to arrange the variables x y into a column vector, even
though these variables are listed in a horizontal order in the original equation
system.

Example 11 The simple national-income model in two endogenous variables Y
and C, .. e e et i — e

Y=C+ I, + G,
C=a+bY
can be rearranged into the standard format of (4.1) as follows:
Y-C=1,+G, ’
—-bY+C=a

Hence the coefficient matrix 4, the vector of variables x, and the vector of
constants d are:

1 -1 ] [ Y] [1 +G ]
A = = d =] 0
2x2) [—b 1 (2):1) C @ex1 a
Let us verify that this given system can be expressed by the equation Ax = d.
- By the rule of matrix multiplication, we have

(ry+ (-] [ r-c
-b(Y)+1(C) | |-bY+cC

1 -1
-5 1

Y
C

Ax =

Thus the matrix equation Ax = 4 would give us

[ Y—C]=[IO+GO] _
—-bY + C a ) . S
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Since matrix equality means the equality between corresponding elements, it is
clear that the equation Ax = d does precisely represent the original equation
system, as expressed in the (4.1) format above.

The Question of Division

While matrices, like numbers, can undergo the operations of addition, subtrac-
tion, and multiplication—subject to the conformability conditions—it is not
possible to divide one matrix by another. That is, we cannot write 4 /B.

For two numbers a and b, the quotient a/b (with b + 0) can be written
alternatively as ab™' or b~ 'a, where b~ " represents the inverse or reciprocal of b.
Since ab~' = b~ 'a, the quotient expression a/b can be used to represent both
ab™"' and b~ 'a. The case of matrices is different. Applying the concept of inverses
to matrices, we may in certain cases (discussed below) define a matrix B~ that is
the inverse of matrix B. But from the discussion of conformability condition it
follows that, if AB~! is defined, there can be no assurance that B~'4 is also
defined. Even if AB~! and B~'A are indeed both defined, they still may not
represent the same product. Hence the expression 4 /B cannot be used without
ambiguity, and it must be avoided. Instead, you must specify whether you are
referring to AB~ ' or B~'4A—provided that the inverse B~ does exist and that the
matrix product in question is defined. Inverse matrices will be further discussed
below.

Digression on ¥ Notation

The use of subscripted symbols not only helps in designating the locations of
parameters and variables but also lends itself to a flexible shorthand for denoting
sums of terms, such as those which arose during the process of matrix multiplica-
tion.

The summation shorthand makes use of the Greek letter ¥ (sigma, for
“sum”). To express the sum of x,, x,, and x,, for instance, we may write

3
X+ Xy + x5 = ij
=1
which is read: “the sum of x; as j ranges from 1 to 3.” The symbol j, called the
summation index, takes only integer values. The expression x; represents the
summand (that which is to be summed), and it is in effect a function of j. Aside

from the letter j, summation indices are also commonly denoted by i or k, such as

Zx,.=x3+x4+x5+x6—+~x7

n B
X =Xg+x, t-+x —

n
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