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4 Show that a diagonal matrix, i.e., a matrix of the form

a, 0 0
0 ay 0
0 0 a

can be idempotent only if each diagonal element is either 1 or 0. How many different
numerical idempotent diagonal matrices of dimension n X n can be constructed altogether
from the matrix above?

4.6 TRANSPOSES AND INVERSES

When the rows and columns of a matrix 4 are interchanged—so that its first row
becomes the first column, and vice versa—we obtain the transpose of A, which is
denoted by A’ or A”. The prime symbol is by no “means new to us; it was used
earlier to distinguish a row vector from a column vector. In the newly introduced
terminology, a row vector x’ constitutes the transpose of the column vector x. The
superscript T in the alternative symbol is obviously shorthand for the word
transpose.

Examplel Given A = [3 8 - 9} and B = [3 4], we can inter-
2x3) 1 0 4 (2x2) 7 -
change the rows and columns and write
3 1
A4 =| 8 o] and B = [3 ! ]
(3x2) 9 4 2x2) 4 7

By definition, if a matrix 4 is m X n, then its transpose A" must be n X m. An
n X n square matrix, however, possesses a transpose with the same dimension.

1 0 4

Example 2 IfC=[9 _l]andD= 0 3 7| then
20
4 7 2
1 0 4
C’=[_? (2)] and D=0 3 7
4 7 2

Here, the dimension of each transpose is identical with that of the original matrix.

In D’, we also note the remarkable result that D’ inherits not only the
dimension of D but also the original array of elements! The fact that D’ = D is
the result of the symmetry of the elements with reference to the principal
“diagonal. Con31der1ng the principal d1agonal in D as a mirror, the elements ™
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located to its northeast are exact images of the elements to its southwest; hence
the first row reads identically with the first column, and so forth. The matrix D
exemplifies the special class of square matrices known as symmetric matrices.
Another example of such a matrix is the identity matrix I, which, as a symmetrlc
matrix, has the transpose I’ = 1.

Properties of Transposes
The following properties characterize transposes:
(4.9) (&) =4
(4100 (A+B)=A4A"+PF
(411) (ABY = B'A’
The first says that the transpose of the transpose is the original matrix—a
rather self-evident conclusion.

The second property may be verbally stated thus: the transpose of a sum is
the sum of the transposes.

Example 3 1f A = [g (1)] and B = [2 O], then

7 1
o 111t
and A’+B’=[‘;r (?)] ] [6 16] ~

The third property is that the transpose of a product is the product of the
transposes in reverse order. To appreciate the necessity for the reversed order, let
us examine the dimension conformability of the two products on the two sides of
(4.11). If we let A be m X n and B be n X p, then AB will be m X p, and (AB)
will be p X m. For equality to hold, it is necessary that the right-hand expression
B’ A’ be of the identical dimension. Since B’ is p X n and A" is n X m, the product
B’A’ is indeed p X m, as required. The dimension of B’A’ thus works out. Note
that, on the other hand, the product A’B’ is not even defined unless m = p.

A
AN

_1],wehave A

. _ {1 2 _ 10
Example 4 G1venA—[3 4]andB [6

7 - XA
[ 12 13| = 12 24 : DL 38 Kf} j - P
(AB) [24 25 [13 25] A )»r A
Y VISR AN A
and B'A =[__1 ”2 4] [ 25] D'ﬂ/: R

This verifies the property.
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Inverses and Their Properties

For a given matrix A4, the transpose A" is always derivable. On the other hand, its
inverse matrix—another type of “derived” matrix—may or may not exist. The
inverse of matrix 4, denoted by A4~ !, is defined only if A4 is a square matrix, in
which case the inverse is the matrix that satisfies the condition

(412) AA'=A"U=1

That is, whether A is pre- or postmultiplied by 4!, the product will be the same
identity matrix. This is another exception to the rule that matrix multiplication is
not commutative.

The following points are worth noting:

1. Not every square matrix has an inverse—squareness is a necessary condition,
but not a sufficient condition, for the existence of an inverse. If a square matrix
A has an inverse, A4 is said to be nonsingular; if A possesses no inverse, it is
called a singular matrix.

2. If A~" does exist, then the matrix A can be regarded as the inverse of 4!, just
as A~ ! is the inverse of A. In short, 4 and 4! are inverses of each other.

3. If A is n X n, then 4! must also be n X n; otherwise it cannot be conform-
able for both pre- and postmultiplication. The identity matrix produced by the
multiplication will also be n X n.

4. If an inverse exists, then it is unique. To prove its uniqueness, let us suppose
that B has been found to be an inverse for 4, so that

AB=BA =1
Now assume that there is another matrix C such that AC = C4 = 1. By
premultiplying both sides of 4B = I by C, we find that [~
CAB=CI(=C) [by(4.8)]
Since CA = I by assumption, the preceding equation is reducible to
IB=C or B=C

That is, B and C must be one and the same inverse matrix. For this reason, we
can speak of the (as against an) inverse of A.

5. The two parts of condition (4.12)—namely, A4 ™! = Tand 4A~'4 = I—actually
imply each other, so that satisfying either equation is sufficient to establish the
inverse relationship between 4 and 4 ~!. To prove this, we should show that if
AA~" = I, and if there is a matrix B such that B4 = I, then B = A~ (so that
BA = I must in effect be the equation 4~ '4 = I'). Let us postmultiply both
sides of the given equation BA = I by A~"; then

(BAYA™' = 14"
B(AA ') =14"" [associative law]
BI=14~" [AA~' = I by assumption]
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Therefore, as required,
B=A4"" [by (4.8)]

Analogously, it can be demonstrated that, if 4~'4 = I, then the only matrix C
which yields CA~! = I'is C = A.

| =13 1 _1[2 —1]_ .
Example 5 Let A = [0 2] and B = 5 [0 L then, since the scalar

multiplier () in B can be moved to the rear (commutative law), we can write
3 - _[1 0]
AB = [0 2”0 3]6 [0 6 6 [0 1]

This establishes B as the inverse of A4, and vice versa. The reverse multiplication,
as expected, also yields the same identity matrix:

BA—6[ _3”0 2] 6 0 6] (1’ (1)

The following three properties of inverse matrices are of interest. If A and B
are nonsingular matrices with dimension n X n, then:

413) (4 '=4
(4.14)  (4B) '=B 4!
(4.15) (4 '=(a"ty

The first says that the inverse of an inverse is the original matrix. The second
states that the inverse of a product is the product of the inverses in reverse order.
And the last one means that the inverse of the transpose is the transpose of the
inverse. Note that in these statements the existence of the inverses and the
satisfaction of the conformability condition are presupposed.

The validity of (4.13) is fairly obvious, but let us prove (4.14) and (4.15).
Given the product 4B, let us find its inverse—call it C. From (4.12) we know that
CAB = I; thus, postmultiplication of both sides by B~'4~! will yield
(4.16)  CABB~'A™'=IB-'A7' (=B capsa". v K

-

But the left side is reducible to C - A 0"
CA(BB ')A~ ' = CAIA™! [by (4.12)]
=CAA™'=CI=C [by(4.12) and (4.8)]

Substitution of this into (4.16) then tells us that C = B~'4 ! or, in other words,
that the inverse of AB is equal to B~'4 !, as alleged. In this proof, the equation
AA~' = A7'4 = I was utilized twice. Note that the application of this equation
is permissible if and only if a matrix and its inverse are strictly adjacent to each
other in a product. We may write A4~ 'B = IB = B, but never ABA™' =

The proof of (4.15) is as follows. Given A’, let us find its inverse—call it D.
By definition, we then have DA’ = I. But we know that

(447 =T =1
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produces the same identity matrix. Thus we may write
DA = (AA'Y
=(47'ya  [by(4.11)]
Postmultiplying both sides by (A4’)”!, we obtain
DA(AY ' = (A" YA(4) !
or D=(A"'Y by (4.12)]

Thus, the inverse of A’ is equal to (A4'Y, as alleged.

In the proofs just presented, mathematical operations were performed on
whole blocks of numbers. If those blocks of numbers had not been treated as
mathematical entities (matrices), the same operations would have been much
more lengthy and involved. The beauty of matrix algebra lies precisely in its
simplification of such operations.

Inverse Matrix and Solution of Linear-Equation System

The application of the concept of inverse matrix to the solution of a simulta-
neous-equation system is immediate and direct. Referring to the equation system
in (4.3), we pointed out earlier that it can be written in matrix notation as
(4.17) A x = d

(B3x3) 3xl)  (BX1)
where 4, x, and d are as defined in (4.4). Now if the inverse matrix 4 ~! exists, the
premultiplication of both sides of the equation (4.17) by 4! will yield

A ' Ax =AY

or

(4.18) x = A7
3x1) 3xX3) 3x1

-
The left side of (4.18) is a column vector of variables, whereas the right-hand
product is a column vector of certain known numbers. Thus, by definition of the
equality of matrices or vectors, (4.18) shows the set of values of the variables that
satisfy the equation system, i.e., the solution values. Furthermore, since A~ ' is
unique if it exists, 4~ 'd must be a unique vector of solution values. We shall
therefore write the x vector in (4.18) as X, to indicate its status as a (unique)
solution.

Methods of testing the existence of the inverse and of its calculation will be
discussed in the next chapter. It may be stated here, however, that the inverse of
the matrix 4 in (4.4) is ‘

1 18 —-16 -10
A“=5—2—13 26 13

-17 18 21
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Thus (4.18) will turn out to be

3 18 —16 - 10 22 2
% | = 5i2 13 6 3
%, 17 1

which gives the solution: X, = 2, X, = 3, and X; =

The upshot is that, as one way of finding the solutlon of a linear-equation
system Ax = d, where the coeflicient matrix A4 is nonsingular, we can first find the
inverse 47!, and then postmultiply 4 ! by the constant vector d. The product
A~'d will then give the solution values of the variables.

~N

£
EXERCISE 4.6
)P'X
. _ 2 4 13 8 _|1 0 9 ' e ' -
lleenA—[_1 3],3—[0 1],andC [6 1 l] find A’, B’, and.C".

2 Use the matrices given in the preceding problem to verify that

(a) (A+BY =A + B (b) (ACY = C'A’
3 Generalize the result (4.11) to the case of a product of three matrices by proving that,
for any conformable matrices A, B, and C, the equation (4BC) = C’B’A’ holds.

4 Given the following four matrices, test whether any one of them is the inverse of
another: :

_[1 12 _[1 1 _|r -4 | 4 -
D‘[o 3 E‘[s 8] F‘[o %] G_[_3

5 Generalize the result (4.14) by proving that, for any conformable nonsingular matrices
A, B, and C, the equation (4BC) ' = C7'B~Y4~ ",
6 Letd=1—X(X'X)'X.
(a) Must 4 be square? Must (X’ X) be square? Must X be square?
(b) Show that matrix 4 is idempotent. [Note: If X’ and X are not square, it is
inappropriate to apply (4.14).]

Nl— M=

=
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