CHAPTER

SIX

COMPARATIVE STATICS
AND THE CONCEPT OF DERIVATIVE

The present and the two following chapters will be devoted to the methods of
comparative-static analysis.

6.1 THE NATURE OF COMPARATIVE STATICS

Comparative statics, as the name suggests, is concerned with the comparison of
different equilibrium states that are associated with different sets of values of
parameters and exogenous variables. For purposes of such a comparison, we
always start by assuming a given initial equilibrium state. In the isolated-market
model, for cxample such an initial equilibrium will be represented by a de-
terminate price P and a corresponding quantity Q. Similarly, in the simple
national-income model of (3.23), the initial equilibrium will be specified by a
determinate Y and a corresponding C. Now if we let a disequilibrating change
occur in the model—in the form of a variation in the value of some parameter or
exogenous variable—the initial equilibrium will, of course, be upset. As a result,
the various endogenous variables must undergo certain adjustments. If it is
assumed that a new equilibrium state relevant to the new values of the data can
be defined and attained, the question posed in the comparative-static analysis is:
How would the new equilibrium compare with the old?

It should be noted that in comparative statics we again disregard the process
of adjustment of the variables; we merely compare the initial ( prechange)
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128 COMPARATIVE-STATIC ANALYSIS

equilibrium state with the final ( postchange) equilibrium state. Also, we again
preclude the possibility of instability of equilibrium, for we assume the new
equilibrium to be attainable, just as we do for the old.

A comparative-static analysis can be either qualitative or quantitative in
nature. If we are interested only in the question of, say, whether an increase in
investment I, will increase or decrease the equilibrium income Y, the analysis will
be qualitative because the direction of change is the only matter considered. But if
we are concerned with the magnitude of the change in Y resulting from a given
change in [, (that is, the size of the investment multiplier), the he analysis will
obviously be quantitative. By obtaining a quantitative answer, however, we can

automatically tell the direction of change from its algebraic sign. Hence the

quantitative analysis always embraces the qualitative.

It should be clear that the problem under consideration is essentially one of
finding a rate of change: the rate of change of the equilibrium value of an
endogenous variable with respect to the change in a particular parameter or_
exogenous variable. For this reason, the mathematical concept of derivative takes
on preponderant significance in comparative statics, because that concept— the
most fundamental one in the branch of mathematics known as differential calculus
— is directly concerned with the notion of rate of change! Later on, moreover, we
shall find the concept of derivative to be of extreme importance for optimization
problems as well.

6.2 RATE OF CHANGE AND THE DERIVATIVE

Even though our present context is concerned only with the rates of change of the
equilibrium values of the variables in a model, we may carry on the discussion in
a more general manner by considering the rate of change of any variable y in
response to a change in another variable x, where the two variables are related to

y=fx) O

Applied in the comparative-static context, the variable y will represent the
equilibrium value of an endogenous variable, and x will be some parameter. Note
that, for a start, we are restricting ourselves to the simple case where there is only
a single parameter or exogenous variable in the model. Once we have mastered
this simplified case, however, the extension to the case of more parameters will
prove relatively easy.

The Difference qu@ggt

Since the notion of “change” figures prominently in the present context, a special

symbol is needed to represent it. When the variable x changes from the value X,

to a new value x,, the change is measured by the difference x, — x,,. Hence, using

the symbol A (the Greek capital delta, for “difference”) to denote the change, we
o erTe TRe, U7 e
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write Ax = x; — x,. Also needed is a way of denoting the value of the function
f(x) at various values of x. The standard practice is to use the notation f(x,) to
represent the value of f(x) when x = x,. Thus, for the function f(x) =5 + x?
we have f(0) = 5 + 0% = 5; and similarly, f(2) = 5 + 22 = 9, etc.

When x changes from an initial value x, to a new value (x, + Ax), the value
of the function y = f(x) changes from f(x;) to f(x, + Ax). The change in y per
unit of change in x can be represented by the difference quotient

61 Ay [Ga+A0) - (x))

) Ax Ax » /

This quotient, which measures the average rate of change of y, can be calculated if
we know the initial value of x, or x,, and the magnitude of change in x, or Ax.
That is, Ay/Ax is a function of x, and Ax.

!
Example 1 Giveny = f(x) = 3x? — 4, we can write: - /(X)t X tiax

f(x0) =3(x0) =4 flxo+ Ax)=3(x, + Ax)’ = 4
Therefore, the difference quotient is

Ay 3(x+ Ax)’ —4— (3x2 — 4) _ bxolx + 3(Ax)A X7 /w 0/7, )
Ax Ax Ax

/.Wf‘ - i T
'=6x,+ 3Ax

(6.2)

which can be evaluated if we are given x;, and Ax. Let x, = 3 and Ax = 4; then
the average rate of change of y will be 6(3) + 3(4) = 30. This means that, on the
average, as x changes from 3 to 7, the change in y is 30 units per unit change in x.

The Derivative

Frequently, we are interested in the rate of change of y when Ax is very small. In
such a case, it is possible to obtain an approximation of Ay/Ax by dropping all
the terms in the difference quotient involving the expression Ax. In (6.2), for
instance, if Ax is very small, we may simply take the term 6x, on the right as an
approximation of A y/Ax. The smaller the value of Ax, of course, the closer is the
approximation to the true value of Ay/Ax.

As Ax approaches zero (meaning that it gets closer and closer to, but never
actually reaches, zero), (6x, + 3Ax) will approach the value 6x,, and by the
same token, Ay/Ax will approach 6x, also. Symbolically, this fact is expressed
either by the statement A y/Ax - 6x0 as Ax — 0, or by the equation

7 Ay T T
6.3) [/ Im —=1 6 +3A =6
(63) tim 2L lim (6x, +38%) = 65,
where the symbol hm is read: “The limit of... as Ax approaches 0.” If, as

Ax — 0, the limit of the difference quotient A y/Ax exists, that limit is identified
as the derivative of the function y = f(x).
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Several points should be noted about the derivative. First, a derivative is a
function; in fact, in this usage the word derivative really means a derived function.
The original function y = f(x) is a primitive function, and the derivative is
another function derived from it. Whereas the difference quotient is a function of
x, and Ax, you should observe— from (6.3), for instance—that the derivative is a
function of x; only. This is because Ax is already compelled to approach zero,
and therefore it should not be regarded as another variable in the function. Let us
also add that so far we have used the subscripted symbol x, only in order to stress
the fact that a change in x must start from some specific value of x. Now that this
is understood, we may delete the subscript and simply state that the derivative,
like the primitive function, is itself a function of the independent variable x. That
is, for each value of x, there is a unique corresponding value for the derivative
function.

Second, since the derivative is merely a limit of the difference quotient, which
measures a rate of change of y, the derivative must of necessity also be a measure
of some rate of change. In view of the fact that the change in x envisaged in the
derivative concept is infinitesimal (that is, Ax — 0), however, the rate measured
by the derivative is in the nature of an instantaneous rate of change.
" Third, there is the matter of notation. Derivative functions are commonly
denoted in two ways. Given a primitive function y = f(x), one way of denoting
its derivative (if 1t exists) is to use the symbol f'(x), or simply f’; this notation is
attributed to the mathematician Lagrange. The other common notation is dy/dx,
devised by the mathematician Leibniz. [Actually there is a third notation, Dy, or
Df(x), but we shall not use it in the following discussion.] The notation f’(x),
which resembles the notation for the primitive function f(x), has the advantage of
conveying the idea that the derivative is itself a function of x. The reason for
expressing it as f’(x)—rather than, say, ¢(x)—is to emphasize that the function
f’ is derived from the primitive function f. The alternative notation, dy/dx, serves
instead to emphasize that the value of a derivative measures a rate of change. The
letter d is the counterpart of the Greek A, and dy /dx differs from Ay /Ax chiefly
subsequent discussion, we shall use both of these notations, depending on which
seems the more convenient in a particular context.

Using these two notations, we may define the derivative of a given function
y = f(x) as follows:

Example 2 Referring to the function y = 3x2 — 4 again, we have shown its
difference quotient to be (6.2), and the limit of that quotient to be (6.3). On the
basis of the latter, we may now write (replacing x, with x):
&
dx
Note that different values of x will give the derivative correspondingly different

=6x or f'(x)=6x
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values. For instance, when x = 3, we have f'(x) = 6(3) = 18; but when x = 4, we
find that f'(4) = 6(4) = 24.

EXERCISE 6.2

1 Given the function y = 4x2 + 9:
(a) Find the difference quotient as a function of x and Ax. (Use x in lieu of x;).
(b) Find the derivative dy/dx.
(¢) Find f’(3) and f'(4).

2 Given the function y = 5x2 — 4x:
(a) Find the difference quotient as a function of x and Ax.
(b) Find the derivative dy /dx.
(¢) Find f'(2) and f'(3).

3 Given the function y = 5x — 2:

(a) Find the difference quotient Ay/Ax. What type of function is it?

(b) Since the expression Ax does not appear in the function Ay/Ax above, does it
make any difference to the value of Ay/Ax whether Ax is large or small? Consequently,
what is the limit of the difference quotient as Ax approaches zero?

6.3 THE DERIVATIVE AND THE SLOPE OF A CURVE

Elementary economics t€lls us that, given a total-cost function C = f(Q), where C
denotes total cost and Q the output, the marginal cost (MC) is defined as the
change in total cost resulting from a unit increase in output; that is, MC =
AC/AQ. It is understood that AQ is an extremely small change. For the case of a
product that has discrete units (integers only), a change of one unit is the smallest
change possible; but for the case of a product whose gquantity is a continuous
variable, AQ will refer to an infinitesimal change. In this latter case, it is well
known that the marginal cost can be measured by the slope of the total-coét_
curve. But the slope of the total-cost curve is nothing but the limit of the ratio -
AC/AQ, when AQ approaches zero. Thus the concept of the slope of a curve is
merely the geometric counterpart of the concept of the derivative. Both have to do
with the “marginal” notion so extensively used in economics.

In Fig. 6.1, we have drawn a total-cost curve C, which is the graph of the
(primitive) function C = f(Q). Suppose that we consider Q, as the initial output
level from which an increase in output is measured, then the relevant point on the
cost curve will be 4. If output is to be raised to Q, + AQ = Q,, the total cost will
be increased from C, to C, + AC= Gy; thus AC/AQ = (C, — Cp)/(Q5 — Qo).
Geometncally, this is the ratio of two line segments, EB/AE, or the slope of the

line is particular ratio measures an average rate of change—the average
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Figure 6.1

marginal cost for the particular AQ pictured—and represents a difference quo-
tient. As such, it is a function of the initial value Q, and the amount of change
AQ.

What happens when we vary the magnitude of AQ? If a smaller output
increment is contemplated (say, from Q, to Q, only), then the average marginal
cost will be measured by the slope of the line 4D instead. Moreover, as we reduce
the output increment further and further, flatter and flatter lines will result until,
in the limit (as AQ — 0), we obtain the line KG (which is the tangent line to the
cost curve at point 4) as the relevant line. The slope of KG(= HG/KH)
measurés the slope of the total-cost curve at point 4 and represents the limit of
AC/AQ, as AQ — 0, when initial output is at Q = Q,,. Therefore, in terms of the
derivative, the slope of the C = f(Q) curve at point 4 corresponds to the
particular derivative value f'(Q,).

What if the initial output level is changed from Q, to, say, Q,? In that case,
point B on the curve will replace point A as the relevant point, and the slope of
the curve at the new point B will give us the derivative value f'(Q,). Analogous
results are obtainable for alternative initial output levels. In general, the derlvatlve
f'(Q)—a function of Q—will vary as Q changes. )

6.4 THE CONCEPT OF LIMIT

The derivative dy/dx has been defined as the limit of the difference quotient
Ay/Ax as Ax — 0. If we adopt the shorthand symbols ¢ = Ay/Ax (q for
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quotient) and v = Ax (v for variation), we have

dy .. Ay
— lim lim
dx  ax—o Ax u—»oq

In view of the fact that the derivative concept relies heavily on the notion of limit,
it is imperative that we get a clear idea about that notion.

Left-Side Limit and Right-Side Limit

The concept of limit is concerned with the question: “What value does one
variable (say, ¢) approach as another variable (say, v) approaches a specific value
(say, zero)?” In order for this question to make sense, ¢ must, of course, be a
function of v; say, ¢ = g(v). Our immediate interest is in finding the limit of ¢ as
v — 0, but we may just as easily explore the more general case of v — N, where N
is any finite real number. Then, lim g will be merely a special case of lim ¢

where N = 0. In the course of thevdigcussion, we shall actually also consider t’\{le
limit of g as v = + oo (plus infinity) or as v = — 0o (minus infinity).

When we say v — N, the variable v can approach the number N either from
values greater than N, or from values less than N. If, as v — N from the left side
(from values less than N), g approaches a finite number L, we call L the left-side
limit of q. On the other hand, if L is the number that g tends to as v = N from
the right side (from values greater than N), we call L the right=side limit of q. The
left- and right-side limits may or may not be equal.

The left-side limit of ¢ is symbolized by lim g (the minus sign signifies from
values less than N), and the right-side hnut 1sN written as lim ¢. When—and

v=>N*
only when—the two limits have a common finite value (say, L), we consider the

limit of ¢ to exist and write it as lmzlv q = L. Note that L must be a finite number.
If we have the situation of lim qv= oo (or — o0), we shall consider g to possess no
limit, because lim g = oovmgans that ¢ — o0 as v = N, and if ¢ will assume '
ever-increasing szah);]es as v tends to N, it would be contradictory to say that g has
a limit. As a convenient way of expressing the fact that ¢ » o0 as v — N,
however, people do indeed write lim ¢ = oo and speak of ¢ as having an
“infinite limit.”. oo N
"~ In certain cases, only the limit of one side needs to be considered. In taking
the limit of g as v = + o0, for instance, only the left-side limit of ¢ is relevant,
because v can approach +oo only from the left. Similarly, for the case of
v = — o0, only the right-side limit is relevant. Whether the limit of g exists in
these cases will depend only on whether g approaches a finite value as v — + oo,
or as v — — 0.
It is important to realize that the symbol co (infinity) is not a number, and
therefore it cannot be subjected to the usual algebraic operations. We cannot have
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3+ o or 1/00; nor can we write ¢ = 0o, which is not the same as g — oo.
However, it is acceptable to express the limit of g as “ = ” (as against —) oo, for
this merely indicates that g — .

Graphical Illustrations

Let us illustrate, in Fig. 6.2, several possible situations regarding the limit of a
function g = g(v).

Figure 6.2a shows a smooth curve. As the variable v tends to the value N
from either side on the horizontal axis, the variable ¢ tends to the value L. In this
case, the left-side limit is identical with the right-side limit; therefore we can write

lim g = L.

D_)NThe curve drawn in Fig. 6.2b is not smooth; it has a sharp turning point
directly above the point N. Nevertheless, as v tends to N from either side, g again
tends to an identical value L. The limit of ¢ again exists and is equal to L.

Figure 6.2¢ shows what is known as a step function.* In this case, as v tends
to N, the left-side limit of g is L,, but the right-side limit is L,, a different
number. Hence, ¢ does not have a limit as v — N.

Lastly, in Fig. 6.2d, as v tends to N, the left-side limit of g is — oo, whereas
the right-side limit is + oo, because the two parts of the (hyperbolic) curve will
fall and rise indefinitely while approaching the broken vertical line as an asymp-

tote. Again, lim ¢ does not exist. On the other hand, if we are considering a
—N
different sort of limit in diagram d, namely, lim g, then only the left-side limit
v— +
has relevance, and we do find that limit to exist: “lim g = M. Analogously, you

can verify that lim g = M as well. ezt

It is also pogsible00 to apply the concepts of left-side and right-side limits to the
discussion of the marginal cost in Fig. 6.1. In that context, the variables g and v
will refer, respectively, to the quotient AC/AQ and to the magnitude of AQ, with
all changes being measured from point 4 on the curve. In other words, g will refer
to the slope of such lines as AB, AD, and KG, whereas v will refer to the length of
such lines as Q,Q, (= line AE) and Q,Q, (= line AF). We have already seen
that, as v approaches zero from a positive value, g will approach a value equal to
the slope of line KG. Similarly, we can establish that, if AQ approaches zero from

. * This name is easily explained by the shape of the curve. But step functions can be expressed
algebraically, too. The one illustrated in Fig. 6.2¢ can be expressed by the equation

L, (for0 < v < N)
7= L, (for N < v)

Note that, in each subset of its domain described above, the function appears as a distinct constant
function, which constitutes a “step” in the graph.

In economics, step functions can be used, for instance, to show the various prices charged for
different quantities purchased (the curve shown in Fig. 6.2 ¢ pictures quantity discount) or the various
tax rates applicable to different income brackets.
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a negative value (i.e., as the decrease in output becomes less and less), the quotient
AC/AQ, as measured by the slope of such lines as R4 (not drawn), will also
approach a value equal to the slope of line KG. Indeed, the situation here is very
much akin to that illustrated in Fig. 6.24. Thus the slope of KG in Fig. 6.1 (the
counterpart of L in Fig. 6.2) is indeed the limit of the quotient g as v tends to
zero, and as such it gives us the marginal cost at the output level Q = Q,,.
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Evaluation of a Limit

Let us now illustrate the algebraic evaluation of a limit of a given function
g = g(v).

Example 1 Given g =2 + v?, find lim g. To take the left-side limit, we sub-
v—=0

stitute the series of negative values — 1, — 7, — 1&,... (in that order) for v and
find that (2 + v?) will decrease steadily and approach 2 (because v> will gradually
approach 0). Next, for the right-side limit, we substitute the series of positive
values 1, 75, 7g5,-.. (in that order) for v and find the same limit as before.
Inasmuch as the two limits are identical, we consider the limit of g to exist and
write lim g = 2.

v—0

It is tempting to regard the answer just obtained as the outcome of setting

v =0 in the equation ¢ =2 + v?, but this temptation should in general be

resisted. In evaluating lim g, we only let v tend to N but, as a rule, do not let
N

v = N. Indeed, we can &lﬁte legitimately speak of the limit of g as v — N, even if
N is not in the domain of the function g = g(v). In this latter case, if we try to set
v = N, g will clearly be undefined.

Example 2 Given ¢ = (1 — v?)/(1 — v), find lim g. Here, N = 1 is not in the

domain of the function, and we cannot set v u=~’11 because that would involve
division by zero. Moreover, even the limit-evaluation procedure of letting v — 1,
as used in Example 1, will cause difficulty, for the denominator (1 — v) will
approach zero when v — 1, and we will still have no way of performing the
division in the limit.

One way out of this difficulty is to try to transform the given ratio to a form
in which v will not appear in the denominator. Since v — 1 implies that v + 1, so
that (1 — v) is nonzero, it is legitimate to divide the expression (1 — v?) by
(1 — v), and write*

1 —v?
q—l_v——l+v (v#1)

* The division can be performed, as in the case of numbers, in the following manner:

I+vo

1—-0|l - v?

1-v
v — v?

D—Uz

Alternatively, we may resort to factoring as follows:

1-0> (1+0v)(1-0v)
= =1
-0 1-v

+to  (v£1)
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In this new expression for ¢, there is no longer a denominator with v in it. Since
(1 + v) = 2 as v — 1 from either side, we may then conclude that lim g = 2.

v—1

Example 3 Given g = Qv + 5)/(v+ 1), find lim gq. The variable v again

appears in both the numerator and the denomina{)o—r).JrI%owe let = + o0 in both,
the result will be a ratio between two infinitely large numbers, which does not
have a clear meaning. To get out of the difficulty, we try this time to transform
the given ratio to a form in which the variable v will not appear in the
numerator.* This, again, can be accomplished by dividing out the given ratio.
Since (2v + 5) is not evenly divisible by (v + 1), however, the result will contain
a remainder term as follows:

_2v+5 _ 3

v+ 1 _2+v+1

But, at any rate, this new expression for ¢ no longer has a numerator with v in it.
Noting that the remainder 3/(v + 1) > 0 as v & + o0, we can then conclude
that lim ¢ =2.

v— + 00

There also exist several useful theorems on the evaluation of limits. These will
be discussed in Sec. 6.6.

Formal View of the Limit Concept

The above discussion should have conveyed some general ideas about the concept
of limit. Let us now give it a more precise definition. Since such a definition will
make use of the concept of neighborhood of a point on a line (in particular, a
specific number as a point on the line of real numbers), we shall first explain the
latter term.

For a given number L, there can always be found a number (L — a,) < L
and another number (L + a,) > L, where a, and a, are some arbitrary positive
numbers. The set of all numbers falling between (L — a,) and (L + a,) is called
the interval between those two numbers. If the numbers (L — a,) and (L + a,)
are included in the set, the set is a closed interval, if they are excluded, the set is
an open interval. A closed interval between (L — a,) and (L + a,) is denoted by
the bracketed expression

[L-—a,L+a,]={q|L—-—a,<q<L+a,) /
and the corresponding open interval is denoted with parentheses:
(64 (L—a,L+a,)={q|L-a, <g<L+a,)

* Note that, unlike the v — 0 case, where we want to take v out of the denominator in order to
avoid division by zero, the v — co case is better served by taking v out of the numerator. As v — oo,

an expression containing v in the numerator will become infinite but an expression with v in the
denominator will, more conveniently for us, approach zero and quietly vanish from the scene.
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Thus, [ ] relate to the weak inequality sign <, whereas ( ) relate to the strict
inequality sign < . But in both types of intervals, the smaller number (L — a,) is
always listed first. Later on, we shall also have occasion to refer to half-open and
half-closed intervals such as (3, 5] and [6, c0), which have the following meanings:

(3.5]={x13<x<5 [6,00)={(x]6<x< o)

Now we may define a neighborhood of L to be an open interval as defined in
(6.4), which is an interval “covering” the number L.* Depending on the magni-
tudes of the arbitrary numbers a, and a,, it is possible to construct various
neighborhoods for the given number L. Using the concept of neighborhood, the
limit of a function may then be defined as follows:

As v approaches a number N, the limit of ¢ = g(v) is the number L, if, for
every neighborhood of L that can be chosen, however small, there can be
found a corresponding neighborhood of N (excluding the point v = N) in the
domain of the function such that, for every value of v in that N-neighbor-
hood, its image lies in the chosen L-neighborhood.

This statement can be clarified with the help of Fig. 6.3, which resembles Fig.
6.2a. From what was learned about the latter figure, we know that lim ¢ = L in

Fig. 6.3. Let us show that L does indeed fulfill the new definition of a lir]rvlit. As the
first step, select an arbitrary small neighborhood of L, say, (L — a,, L + a,).
(This should have been made even smaller, but we are keeping it relatively large
to facilitate exposition.) Now construct a neighborhood of N, say, (N — b,
N + b,), such that the two neighborhoods (when extended into quadrant I) will
together define a rectangle (shaded in diagram) with two of its corners lying on
the given curve. It can then be verified that, for every value of v in this
neighborhood of N (not counting v = N), the corresponding value of g = g(v)
lies in the chosen neighborhood of L. In fact, no matter how small an L-neighbor-
hood we choose, a (correspondingly small) N-neighborhood can be found with the
property just cited. Thus L fulfills the definition of a limit, as was to be
demonstrated.

We can also apply the above definition to the step function of Flg. 6.2¢ in
order to show that neither L, nor L, qualifies as lim g. If we choose a very small

neighborhood of L,—say, just a hair’s width on ga_élq/ side of L,—then, no matter
what neighborhood we pick for N, the rectangle associated with the two neighbor-
hoods cannot possibly enclose the lower step of the function. Consequently, for
any value of v > N, the corresponding value of ¢ (located on the lower step) will
not be in the neighborhood of L, and thus L, fails the test for a limit. By similar
reasoning, L, must also be dismissed as a candidate for lim g. In fact, in this
case no limit exists for g as v — N. oo N

* The identification of an open interval as the neighborhood of a point is valid only when we are
considering a point on a line (one-dimensional space). In the case of a point in a plane (two-dimen-
sional space), its neighborhood must be thought of as an area, say, a circular area around the point.
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The fulfillment of the definition can also be checked algebraically rather than
by graph. For instance, con51der again the function
—p?
-0

(65) g=-

It has been found in Example 2 that lim ¢ = 2; thus, here we have N = 1 and

=1+0 (v#1)

L = 2. To verify that L = 2 is indeed l)thel limit of ¢, we must demonstrate that,
for every chosen neighborhood of L, (2 — a,, 2 + a,), there exists a neighbor-
hood of N, (1 — b, 1 + b,), such that, whenever v is in this neighborhood of N, ¢
must be in the chosen neighborhood of L. This means essentially that, for given
values of a, and a,, however small, two numbers b, and b, must be found such
that, whenever the inequality

(6.6) 1-b <v<l+b (v#1)
is satisfied, another inequality of the form
(67) 2-a,<qg<2+a,

must also be satisfied. To find such a pair of numbers b, and b,, let us first rewrite
(6.7) by substituting (6.5):

(67) 2-a,<14+v<2+a,
This, in turn, can be transformed into the inequality
(67) l1—-a, <v<l1+a,

A comparison of (6.7"")—a variant of (6.7)—with (6.6) suggests that if we choose
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the two numbers b, and b, to be b, = g, and b, = a,, the two inequalities (6.6)
and (6.7) will always be satisfied simultaneously. Thus the neighborhood of N,
(1 — by, 1 + b,), as required in the definition of a limit, can indeed be found for
the case of L = 2, and this establishes L = 2 as the limit.

Let us now utilize the definition of a limit in the opposite way, to show that
another value (say, 3) cannot qualify as lim g for the function in (6.5). If 3 were

that limit, it would have to be true tha[i,_’ flor every chosen neighborhood of 3,
(3 — a,, 3 + a,), there exists a neighborhood of 1, (1 — b, 1 + b,), such that,
whenever v is in the latter neighborhood, ¢ must be in the former neighborhood.
That is, whenever the inequality

l1-b,<v<1+b,
is satisfied, another inequality of the form

3—ag <l+v<3+a,

or 2-a,<v<2+a,

must also be satisfied. The only way to achieve this result is to choose b, = a; — 1
and b, = a, + 1. This would imply that the neighborhood of 1 is to be the open
interval (2 — a;, 2 + a,). According to the definition of a limit, however, a, and
a, can be made arbitrarily small, say, a, = @, = 0.1. In that case, the last-men-
tioned interval will turn out to be (1.9, 2.1) which lies entirely to the right of the
point v =1 on the horizontal axis and, hence, does not even qualify as a
neighborhood of 1. Thus the definition of a limit cannot be satisfied by the
number 3. A similar procedure can be employed to show that any number other
than 2 will contradict the definition of a limit in the present case.

In general, if one number satisfies the definition of a limit of g as v — N, then
no other number can. If a limit exists, it will be unique.

EXERCISE 6.4

1 Given the function g = (v® + v — 56)/(v — 7), (v # 7), find the left-side limit and the
right-side limit of g as v approaches 7. Can we conclude from these answers that g has a
limit as v approaches 7?7

2 Given g = [(v + 2)° — 8]/v, (v # 0), find:
(a) limgq (b) limgq (¢) limgq
o0 p—2 v—a
3 Giveng=35 - 1/v, (v + 0), find:
(a) lim g¢ (b) lim ¢
v— +o00 v — 00 )
4 Use Fig. 6.3 to show that we cannot consider the number (L + a,) as the limit of g as v
tends to N.




	ch6.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15


