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6.6 LIMIT THEOREMS

Our interest in rates of change led us to the consideration of the concept of
derivative, which, being in the nature of the limit of a difference quotient, in turn
prompted us to study questions of the existence and evaluation of a limit. The
basic process of limit evaluation, as illustrated in Sec. 6.4, involves letting the
variable v approach a particular number (say, N ) and observing the value which ¢
approaches. When actually evaluating the limit of a function, however, we may
draw upon certain established limit theorems, which can materially simplify the
task, especially for complicated functions.

Theorems Involving a Single Function

When a single function ¢ = g(v) is involved, the following theorems are applica-
ble. : o R

Theorem 1 If g = av + b, then lim g = aN + b (a and b are constants).
. v—N

Example 1 Given g = 5v + 7, we have lim2 g = 5(2) + 7 = 17. Similarly, lin}) q
. v v
=50)+7="1.

Theorem 11 If ¢ = g(v) = b, then lim g = b.

v—N

This theorem, which says that the limit of a constant function is_the constant in
that function, is merely a special case of Theorem I, with g = 0. (You have
already encountered an example of this case in Exercise 6.2-3.)

Theorem 111 If g = v, then lim ¢ = N.
v—-N

If g = o*, then lim g = N*,

v—N

Example 2 Given g = v°, we have lim g = (2)° = 8.
v—2
You may have noted that, in the above three theorems, what is done to find
the limit of ¢ as v — N is indeed to let v = N. But these are special cases, and
they do not vitiate the general rule that “v — N does not mean “v = N.”

Theorems Involving Two Functions

If we have two functions of the same independent variable v, g, = g(v) and
g, = h(v), and if both functions possess limits as follows:

limg, =L Iimg, =L
0__N‘11 1 v_w‘h# 27

where Ll";md L, are two finite numbers, the following theorems are applicable.
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Theorem IV  (sum-difference limit theorem)
lim (41 tq)=L tL,

The lumt of a sum (; (d1ﬂ‘ercnce) of two functions is the sum (difference) of their
respectlve hrmts

In particular, we note that
lim 2¢, = lim (¢, + ¢,) =L, + L, = 2L,
v—N v—oN
which is in line with Theorem 1.
Theorem V__ (product limit theorem)
lim (41‘12) =L\L,

The hnnt of a product of two functions is the product of their hmlts

Applied to the square of a function, this gives
vli_.n)lv(qlql) =L\L, =L}
which is in line with Theorem III.

Theorem VI (quotient limit theorem)

.4 L,
lim — = — L,#0
o-Ndy L, (£, )
The limit of a quotient of two functions is the quotient of their limits. Naturally,
the hmlt L, is restricted to e nonzero; otherwise the quotient is undeﬁned

Example 3 Find hm (1 + v)/(2 + v). Since we have here hm( +o)F1
=0
g lim (2 + v) =2, the desired limit is 3. S

-0—>0

Remember that L, and L, represent finite numbers; otherwise these thec rems
do not apply. In the case of Theorem VI, furthermore, L, must be nonzero as
well. If these restrictions are not satisfied, we must fall back on the method of
limit evaluation illustrated in Examples 2 and 3 in Sec. 6.4, which relate to the’
cases, respectively, of L, being zero and of L, being infinite.

Limit of a Polynomial Function

With the above limit theorems at our disposal, we can easily evaluate the limit of
any polynomial function .

(6.11) q=2g(v )—a0+au+azv+ -+ a,0"

as v tends to the number N. Since the hrmts of the separate terms are,
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respectively,
lim a, = a, lim a,v = a,N lim a,0* = a,N?  (etc.)
v N v N v N Sl
the limit of the polynomial function is (by the sum limit theorem)

————

(6.12) limg=ay+aN+a,N*+--+a,N"
v—>N

This lirrnitk,isr also, we note, actually equal to g( N), that is, equal to the value of the
function in (6.11) when v = N. This particular result will prove important in
discussing the concept of continuity of the polynomial function.

EXERCISE 6.6

1 Find the limits of the function ¢ = 8 — 9v + v*:

(a) Asv—0 (b) Asv—>3 (c) Asv— —1
2 Find the limits of ¢ = (v + 2)(v ~ 3):

(a) Asv = —1 (b) Asv—> 0 (c) Asv — 4
3 Find the limits of ¢ = 3v + 5)/(v + 2):

(a) Asv -0 (b) Asv—5 (¢) Asv— —1

,4( 67 ‘CONTINUITY AND DIFFERENTIABILITY OF A FUNCTION

The preceding discussion of the concept of limit and its evaluation can now be
used to define the continuity and differentiability of a function. These notions
bear directly on the derivative of the function, which is what interests us.

Continuity of a Function

When a function g = g(v) possesses a limit as v tends to the point N in the
domain, and when this limit is also equal to g( N )—that is, equal to the value of
the function at v = N—the function is said to be continuous at N. As stated
above, the term continuity involves no less than three requirements: (1) the point
N must be in the domain of the function; i.e., g(N) is defined; (2) the function
*  must have a limit as v > N; i.e., hm g(v) exists; and (3) that limit must be equal

m value to g(N); ie, hm g(v) = g(N)

It is important to note that while—in discussing the limit of the curve in Fig.
6.3—the point (N, L) was excluded from consideration, we are no longer
excluding it in the present context. Rather, as the third requirement specifically
states, the point (N, L) must be on the graph of the function before the function
can be considered as continuous at point N.

Let us check whether the functions shown in Fig. 6.2 are continuous. In
diagram g, all three requirements are met at point N. Point N is in the domain; g
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has the limit L as v — N; and the limit L happens also to be the value of the
function at N. Thus, the function represented by that curve is continuous at N.
The same is true of the function depicted in Fig. 6.2b, since L is the limit of the
function as v approaches the value N in the domain, and since L is also the value
of the function at N. This last graphic example should suffice to establish that the
continuity of a function at point N does not necessarily imply that the graph of
the function is “smooth” at v = N, for the point (N, L) in Fig. 6.2b is actually a
“sharp” point and yet the function is continuous at that value of v.

When a function ¢ = g(v) is continuous at all values of v in the interval
(a, b), it is said to be continuous in that interval. If the function is continuous at
all points in a subset S of the domain (where the subset S may be the union of
several disjoint intervals), it is said to be continuous in S. And, finally, if the
function is continuous at all points in its domain, we say that it is continuous in
its domain. Even in this latter case, however, the graph of the function may
nevertheless show a discontinuity (a gap) at some value of v, say, at v = 5, if that
value of v is not in its domain.

Again referring to Fig. 6.2, we see that in diagram ¢ the function is
discontinuous at N because a limit does not exist at that point, in violation of the
second requirement of continuity. Nevertheless, the function does satisfy
the requirements of continuity in the interval (0, N) of the domain, as well as in
the interval [N, c0). Diagram d obviously is also discontinuous at v = N. This
time, discontinuity emanates from the fact that N is excluded from the domain, in
violation of the first requirement of continuity.

On the basis of the graphs in Fig. 6.2, it appears that sharp points are
consistent with continuity, as in diagram b, but that gaps are taboo, as in
diagrams ¢ and d. This is indeed the case. Roughly speaking, therefore, a function
that is continuous in a particular interval is one whose graph can be drawn for the
said interval without lifting the pencil or pen from the paper—a feat which is
possible even if there are sharp points, but impossible when gaps occur.

Polynomial and Rational Functions

Let us now consider the continuity of certain frequently encountered functions.
For any polynomial function, such as g = g(v) in (6.11), we have found from
(6.12) that lim q exists and is equal to the value of the function at N. Since N is a

point (any uIg’olzlnt) in the domain of the function, we can conclude that any
polynomial function is continuous in its domain. This is a very useful piece of
information, because polynomial functions will be encountered very often.

What about rational functions? Regarding continuity, there exists an interest-
ing theorem (the continuity theorem) which states that the sum, difference,
product, and quotient of any finite number of functions that are continuous in the
domain are, respectively, also continuous in the domain. As a result, any rational
function (a quotient of two polynomial functions) must also be continuous in its
domain. :
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Example 1 The rational function
402
2+ 1
is defined for all finite real numbers; thus its domain consists of the interval

(— o0, o). For any number N in the domain, the limit of ¢ is (by the quotient
limit theorem)

g=2g(v)=

: 2
) Jim 407 _ane
imgq = — =
0N lim (v*+1) N?+1
v—>N

which is equal to g(N). Thus the three requirements of continuity are all met at
N. Moreover, we note that N can represent any point in the domain of this
function; consequently, this function is continuous in its domain.

Example 2 The rational function | ,..) ( (- T =2
3, 2 R D T . 2
_v+tvo — 40 — 'T“—};;t)(vi'l) 7, o ©
02 _ 4 r, . ) N
is not defined at v = 2 and at v = — 2. Since those two values of v are not in the
domain, the function is discontinuous at v = —2 and v = 2, despite the fact that

a limit of g exists as v = —2 or 2. Graphically, this function will display a gap at
each of these two values of v. But for other values of v (those which are in the
domain), this function is continuous.

Differentiability Qf a Function_

The previous discussion has provided us with the tools for ascertaining whether
any function has a limit as its independent variable approaches some specific
value. Thus we can try to take the limit of any function y = f(x) as x approaches
some chosen value, say, x,. However, we can also apply the “limit” concept at a
different level and take the limit of the difference quotient of that function,
Ay/Ax, as Ax approaches zero. The outcomes of limit-taking at these two
different levels relate to two different, though related, properties of the function f.

Taking the limit of the function y = f(x) itself, we can, in line with the
discussion of the preceding subsection, examine whether the function f is continu-
ous at x = x,. The conditions for continuity are (1) x = x, must be in the domain
of the function f, (2) y must have a limit as x — x, and (3) the said limit must be
equal to f(x,). When these are satisfied, we can write

(6.13) , lim f(x) = f(xo) " [continuity condition]j
(L x=xg

When the “limit” concept is applied to the difference quotient Ay/Ax as

Ax — 0, on the other hand, we deal instead with the question of whether the

function f is differentiable at x = x,, i.e., whether the derivative dy/dx exists at
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X = xg, or whether f’(x,) exists. The term “differentiable” is used here because
the process of obtaining the derivative dy/dx is known as differentiation (also
called derivation). Since f'(x,) exists if and only if the limit of Ay/Ax exists at’
X = xg as Ax — 0, the symbolic expression ¢ of the differentiability of fis ™~

(6.14)  f'(x,) = hmoi—i >

= lim f(xo + Ax) _f(xo)
Ax—0 Ax

[differentiability condition]

These two properties, continuity and differentiability, are very intimately
related to each other—the continuity of f is a necessary condition for_its
differentiability (although, as we shall see later, this condition is not sufficient).
What this means is that, to be differentiable at x = x,, the function must first
pass the test of being continuous at x = x,,. To prove this, we shall demonstrate
that, given a function y = f(x), its continuity at x = x, follows from its differen-
tiability at x = x,, i.e., condition (6.13) follows from condition (6.14). Before
doing this, however, let us simplify the notation somewhat by (1) replacing x,,
with the symbol N and (2) replacing (x, + Ax) with the symbol x. The latter is
Justifiable because the postchange value of x can be any number (depending on
the magnitude of the change) and hence is a variable denotable by x. The
equivalence of the two notation systems is shown in Fig. 6.4, where the old
notations appear (in brackets) alongside the new. Note that, with the notational
change, Ax now becomes (x — N), so that the expression “Ax — 0” becomes

Yy
y=f(x)
f(x)
[f (x0+ ax)]
Ay
FON) e —
lf (x0) ] l Ax ;
| |
| |
.« 4 .

(0] N——>«x
[x0] [xo+ ax]

Figure 6.4
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“x — N,” which is analogous to the expression v — N used before in connection
with the function ¢ = g(v). Accordingly, (6.13) and (6.14) can now be rewritten,
respectively, as

(6.13) Xh'f}vf(x) =/(N)

616) 1) = tim LEIZI0)

What we want to show is, therefore, that the continuity condition (6.13")
follows from the differentiability condition (6.14"). First, since the notation
x — N implies that x # N, so that x — N is a nonzero number, it is permissible to
write the following identity:

(615)  f(x0) -y = LNy,

Taking the limit of each side of (6.15) as x — N yields the following results:
Left side = lim f(x) — lim f(N) [difference limit theorem]
x—N x—>N

= lim f(x) —f(N) [f(N) is a constant]
x—N et
nght side = lim f) = /(N) lim (x — N)  [product limit theorem]
x—N x—N x—>N :
= f(N)( lim x - lim ) - [by (6.14’) and difference
x—>N x—>N - S

_ limit theorem]
=/(N)(N = N) =0

Note that we could not have written these results, if condition (6.14") had not
been granted, for if f/(N) did not exist, then the right-side expression (and hence
also the left-side expression) in (6.15) would not possess a limit. If f'(N) does
exist, however, the two sides will have limits as shown above. Moreover, when the
left-side result and the right-side result are equated, we get hm f (x)—f(N)=

which is identical with (6.13”). Thus we have proved that COIltlI‘IUhy, as shown in
(6.13"), follows from differentiability, as shown in (6.14'). In general, if a function
is differentiable at every point in its domain, we may conclude that it must be
continuous in its domain.

Although differentiability implies continuity, the converse is not true. That is,
continuity is a necessary, but not a sufficient, condition for differentiability. To
demonstrate this, we merely have to produce a counterexample Let us con51der
the function

(6.16) y=f(x)=|x—-2|+1
which is graphed in Fig. 6.5. As can be readily shown, this function is not

differentiable, though continuous, when x = 2. That the function is continuous at
x = 2 is easy to establish. First, x = 2 is in the domain of the function. Second,
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the limit of y exists as x tends to 2; to be specific, lim L y= lim y= I. Third,
x—27* x—2"

f(2) is also found to be 1. Thus all three requirements of continuity are met. To
show that the function f is not differentiable at x = 2, we must show that the hmlt
of the diff erence quotient_ : T

f)=f@Q) _ =214 1-1 _ L fx=2)
x—'l x—2 x—I>n2 x—2 —)]cl—>2x_2

_does not exist. This involves the demonstration of a disparity between the left-side
and the right-side limits. Since, in considering the right-side limit, x must exceed
2, according to the definition of absolute value in (6.8) we have [x — 2| = x — 2.
Thus the right-side limit is

im X220 o gim X222 pmi =1
x—2* X —2 x—2+ X — 2 x—27*

On the other hand, in considering the left-side limit, x must be less than 2; thus,
according to (6.8), |x — 2| = —(x ~ 2). Consequently, the left-side limit is

=21 _ o =22 o
xlinZl' x =2 —xl—1>1121_ x—2 ~x]in;_( 1)— !
which is different from the right-side limit. This shows that continuity does not
guarantee differentiability. In sum, all differentiable functions are continuous, but
not all continuous functions are differentiable.
~ In Fig. 6.5, the nondifferentiability of the function at x = 2 is manifest in the
fact that the point (2, 1) has no tangent line defined, and hence no definite slope
can be assigned to the point. Specifically, to the left of that point, the curve has a

=lx—21+1
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slope of — 1, but to the right it has a slope of + 1, and the slopes on the two sides
display no tendency to approach a common magnitude at x = 2. The point (2, 1)
is, of course, a special point; it is the only sharp point on the curve. At other
points on the curve, the derivative is defined and the function is differentiable.
More specifically, the function in (6.16) can be divided into two linear functions
as follows:

Leftpart: y= — (x —2) +1

3-x  (xx<2)
x—1 (x>2) -

Rightpart: y = (x—2)+1

The left part is differentiable in the interval (—oo,2), and the right part is
differentiable in the interval (2, 00) in the domain.

In general, differentiability is a more restrictive condition than continuity,
because it requires something beyond continuity. Continuity at a point only rules
out the presence of a gap, whereas differentiability rules out “sharpness” as well.
Therefore, differentiability calls for “smoothness” of the function (curve) as well
as its continuity. Most of the specific functions employed in economics have the
property that they are differentiable everywhere. When general functions are used,
moreover, they are often assumed to be everywhere differentiable, as we shall do.
in the subsequent discussion.

e R

EXERCISE 6.7

1 A function y = f(x) is discontinuous at x = x, when any of the three requirements for
continuity is violated at x = x,. Construct three graphs to illustrate the violation of each
of those requirements.
2 Taking the set of all finite real numbers as the domain of the function g = g(v) = vt~
Tv — 3:

(a) Find the limit of ¢ as v tends to N (a finite real number).

(b) Check whether this limit is equal to g(N).

(¢) Check whether the function is continuous at N and continuous in its domain.

v+2

2497
(a) Use the limit theorems to find lim q, N being a finite real number.

(b) Check whether this limit is equa.l to g(N).
(¢) Check the continuity of the function g(v) at N and in its domain (— 00, 00).

x2+x—20.

3 Given the function ¢ = g(v) =

4 Giveny = f(x) =

(@) Is it possible to apply the quotient limit theorem to find the limit of this function as
x— 47

(b) Is this function continuous at x = 4? Why?

(¢) Find a function which, for x # 4, is equivalent to the above function, and obtain
from the equivalent function the limit of y as x — 4.
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5 In the rational function in Example 2, the numerator is evenly divisible by the
denominator, and the quotient is v + 1. Can we for that reason replace that function
outright by ¢ = v + 1? Why or why not?

6 On the basis of the graphs of the six functions in Fig. 2.8, would you conclude that each
such function is differentiable at every point in its domain? Explain.
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