CHAPTER

SEVEN

RULES OF DIFFERENTIATION AND THEIR USE
IN COMPARATIVE STATICS

The central problem of comparative-static analysis, that of finding a rate of
change, can be identified with the problem of finding the derivative of some
function y = f(x), provided only a small change in x is being considered. Even
though the derivative dy/dx is defined as the limit of the difference quotient
g = g(v) as v = 0, it is by no means necessary to undertake the process of
limit-taking each time the derivative of a function is sought, for there exist various
rules of differentiation (derivation) that will enable us to obtain the desired
derivatives directly. Instead of going into comparative-static models immediately,
therefore, let us begin by learning some rules of differentiation.

7.1 RULES OF DIFFERENTIATION FOR A FUNCTION OF
ONE VARIABLE

First, let us discuss three rules that apply, respectively, to the following types of
function of a single independent variable: y = k (constant function), y = x", and
y = cx" (power functions). All these have smooth, continuous graphs and are
therefore differentiable everywhere.

Constant-Fupcjion Rule _

The derivative of a constant function y = f(x) = k is identically zero, i.e., is zero

for all values of x. Symbolically, this may be expressed variously as
dy dk

dx=0 or 3);=0 or fi(x)=0
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In fact, we may also write these in the form

d d d
&) TS =k =0
where the derivative symbol has been separated into two parts, d/dx on the one
hand, and y [or f(x) or k] on the other. The first part, d/dx, may be taken as an
operator symbol, which instructs us to perform a particular mathematical opera-
tion. Just as the operator symbol v instructs us to take a square root, the symbol
d/dx represents an instruction to take the derivative of, or to differentiate, (some
function) with respect to the variable x. The function to be operated on (to be
differentiated) is indicated in the second part; here it is y = f(x) = k.

The proof of the rule is as follows. Given f(x) = k, we have f(N) = k for
any value of N. Thus the value of f'(N)-—the value of the derivative at
x = N—as defined in (6.13) will be

Ny = i JCO)Zf(N) o k—k

f(N) = lim === lim ~— = lim 0 =0
Moreover, since N represents any value of x at all, the result f/(N) = 0 can be
immediately generalized to f'(x) = 0. This proves the rule.

It is important to distinguish clearly between the statement f'(x) = 0 and the
similar-looking but different statement f'(x,) = 0. By f’(x) = 0, we mean that the
derivative function f has a zero value for all values of x; in writing f'(x,) = 0, on
the other hand, we are merely associating the zero value of the derivative with a
particular value of x, namely, x = x,.

As discussed before, the derivative of a function has its geometric counterpart
in the slope of the curve. The graph of a constant function, say, a fixed-cost
function Cp = f(Q) = $1200, is a horizontal straight line with a zero slope
throughout. Correspondingly, the derivative must also be zero for all values of Q:

d d

0Cr= g2 =0 o f(Q)=0

Power-Function Rule

The derivative of a power function y = f(x) = x" is nx"~!. Symbolically, this is
expressed as . ’

d n _ n—1 ’ — n—1
(7.1) X =% or f'(x)=nx
Example 1 The derivative of y = x3 is @ _ ix3 = 3x?
. Y dx ~ dx '

Example 2 The derivative of y = x° is d_(jcxg = 9x?%,

This rule is valid for any real-valued power of x; that is, the exponent can be
any real number. But we shall prove it only for the case where n is some positive

—
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integer. In the simplest case, that of n =1, the function is f(x)= x, and
according to the rule, the derivative is

, d__ 0) =
f(x) dxx—l(x)—l
The proof of this result follows easily from the definition of f(N) in (6.14").
Given f(x) = x, the derivative value at any value of x, say, x = N, is

f(N)= L)—fgv—) = lim 1=

x—>N x—>N X — x—=N
Since N represents any value of x, it is permissible to write f'(x) = 1. This proves
the rule for the case of n = 1. As the graphical counterpart of this result, we see
that the function y = f(x) = x plots as a 45° line, and it has a slope of +1
throughout.

For the cases of larger integers, n = 2,3,..., let us first note the following
identities:
x?— N? .
TN =X + N [2 terms on the right]
x3— N3 ) ) .
SN =Xt Nx + N [3 terms on the right]
x" - N" — yn—1 n—2 2 n-‘3 n—1 ’
(7.2) vl + Nx +Nx + .-+ +N

[n terms on the right]

On the basis of (7.2), we can express the derivative of a power function f(x) = x”
at x = N as follows:

X i "—N"
13 p) = tim LI TN
= )}Er]lv(x" '+ Nx" 24 .-+ N1 [by(7.2)]
= lim x""" + lim Nx"">+ --- + lim N7l
x—>N x=N . x—N
[sum limit theorem]
=N"'+N""'4..- 4 NI [a total of n terms]
=nN""!
Again, N is any value of x; thus this last result can be generalized to
7/(x) = nxr!

which proves the rule for n, any positive integer.

As mentioned above, this rule applies even when the exponent » in the power
expression x" is not a positive integer. The following examples serve to ﬂlustrate
its application to the latter cases. ‘
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Example 3 Find the derivative of y = x°. Applying (7.1), we find

4 o0 _ (1) =
o =0(x"")=0

Example 4 Find the derivative of y = 1/x3. This involves the reciprocal of a
power, but by rewriting the function as y = x~3, we can again apply (7.1) to get
the derivative:

d 5_ _ 4 -4 _ -3
dxx = —3x [— ]

Example 5 Find the derivative of y = yx . A square root is involved in this case,
but since Vx = x'/2, the derivative can be found as follows:

d n_1 p /=_1_
dxx —2x 2\/;’

Derivatives are themselves functions of the independent variable x. In
Example 1, for instance, the derivative is dy/dx = 3x?, or f'(x) = 3x2, so that a
different value of x will result in a different value of the derivative, such as

Fy=31y=3 r@=32"=12
These specific values of the derivative can be expressed alternatively as

dy dy

d—xx=]_3 dx x=2_12
but the notations f’(1) and f’(2) are obviously preferable because of their
simplicity.

It is of the utmost importance to realize that, to find the derivative values
f (D), f'(2), etc., we must first differentiate the function f(x), in order to get the
derivative function f'(x), and then let x assume specific values in f’(x). To
substitute specific values of x into the primitive function f(x) prior to differentia-
tion is definitely not permissible. As an illustration, if we let x = 1 in the function
of Example 1 before differentiation, the function will degenerate into y = x = 1
—a constant function—which will yield a zero derivative rather than the correct
answer of f/(x) = 3x2.

Power-Function Rule Generalized

When a multiplicative constant ¢ appears in the power function, so that f(x) =
cx”", its derivative is

d _ -
;J;C)C" =cnx" ' or f'(x)=cnx""!

This result shows that, in differentiating cx”, we can simply retain the multiplica-
tive constant ¢ intact and then differentiate the term x" according to (7.1).
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Example 6 Given y = 2x, we have dy/dx = 2x% = 2.
Example 7 Given f(x) = 4x>, the derivative is f'(x) = 12x2.
Example 8 The derivative of f(x) = 3x"2is f'(x)= —6x3

For a proof of this new rule, consider the fact that for any value of x, say,
x = N, the value of the derivative of f(x) = ¢x" is

ANy = T f(X) f(N) ex” — eN" _ o (x"‘N"
)=l B IR R
x"— N7
= lim ¢ lim [product limit theorem]
x—>N xoN X— N
= ¢ lim XN [limit of a constant]

= cnN"! [from (7.3)]

In view that N is any value of x, this last result can be generalized immediately to
f(x) = cnx""", which proves the rule.

EXERCISE 7.1

1 Find the derivative of each of the following functions:
(a) y =x" (¢) y=Tx® (e) w= —4yu'/?
(b y=163 (d) w=3u""'

2 Find the following:

@ L-x (0 i9w“ (€) S aut
@) ' * du
.., 4
(b) Ix Tx (d) cx
3 Find f'(1) and f'(2) from the following functions:

(a) y=f(x)=18x (¢) f(x)= —5x7*2 (e) f(w)=6w'"3
(b) y = f(x) = ex’ (d) f(x)=ix*"

4 Graph a function f(x) that gives rise to the derivative function f’(x) = 0. Then graph a
function g(x) characterized by f'(x,) = 0.

7.2 RULES OF DIFFERENTIATION INVOLVING TWO OR MORE
FUNCTIONS OF THE SAME VARIABLE

The three rules presented in the preceding section are each concerned with a
single given function f(x). Now suppose that we have two differentiable functions
of the same variable x, say, f(x) and g(x), and we want to differentiate the sum,
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difference, product, or quotient formed with these two functions. In such circum-
stances, are there appropriate rules that apply? More concretely, given two
functions—say, f(x) = 3x? and g(x) = 9x'>—how do we get the derivative of,
say, 3x? + 9x'2, or the derivative of (3x?)(9x'%)?

Sum-Difference Rule

The derivative of a sum (difference) of two functions is the sum (difference) of the
derivatives of the two functions:

L[1(x) £ 8(0)] = 2 f(x) + g(x) = f(x) £ 8/(x)

The proof of this again involves the application of the definition of a derivative
and of the various limit theorems. We shall omit the proof and, instead, merely
verify its validity and illustrate its application.

Example 1 From the function y = 14x3, we can obtain the derivative dy/dx =
42x2%. But 14x3 = 5x3 + 9x3, so that y may be regarded as the sum of two
functions f(x) = 5x* and g(x) = 9x>. According to the sum rule, we then have

% = %(5;& +9x%) = %sﬁ + %9):3 = 15x% + 27x* = 42x°

which is identical with our earlier result.

This rule, stated above in terms of two functions, can easily be extended to
more functions. Thus, it is also valid to write

L7(x) £ 8(x) £ h(x)] = £(x) £ () £ K(x)

Example 2 The function cited in Example 1, y = 14x>, can be written as
y = 2x* + 13x® — x>. The derivative of the latter, according to the sum-difference
rule, is
& _ 4
dx  dx

which again checks with the previous answer.

(2x3 + 13x3 — x3) = 6x2 + 39x% — 3x? = 42x?

This rule is of great practical importance. With it at our disposal, it is now
possible to find the derivative of any polynomial function, since the latter is
nothing but a sum of power functions.

Example 3 d—‘i(ax2 +bx+cy=2ax+b
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Example 4

%(7x4+2x3—3x+37)=28x3+6x2—3+0=28x3+6x2—3

Note that in the last two examples the constants ¢ and 37 do not really
produce any effect on the derivative, because the derivative of a constant term is
zero. In contrast to the multiplicative constant, which is retained during differenti-
ation, the additive constant drops out. This fact provides the mathematical
explanation of the well-known economic principle that the fixed cost of a firm
does not affect its marginal cost. Given a short-run total-cost function

C=0Q°-402+10Q0 + 75

the marginal-cost function (for infinitesimal output change) is the limit of the
quotient AC/AQ, or the derivative of the C function:

ac _ . .,

0 - 30°— 80+ 10
whereas ihe fixed cost is represented by the additive constant 75. Since the latter
drops out during the process of deriving dC/dQ, the magnitude of the fixed cost
obviously cannot affect the marginal cost.

In general, if a primitive function y = f(x) represents a total function, then
the derivative function dy/dx is its marginal function. Both functions can, of
course, be plotted against the variable x graphically; and because of the corre-
spondence between the derivative of a function and the slope of its curve, for each
value of x the marginal function should show the slope of the total function at
that value of x. In Fig. 7.1a, a linear (constant-slope) total function is seen to
have a constant marginal function. On the other hand, the nonlinear (varying-
slope) total function in Fig. 7.1b gives rise to a curved marginal function, which
lies below (above) the horizontal axis when the total function is negatively
(positively) sloped. And, finally, the reader may note from Fig. 7.1¢ (cf. Fig. 6.5)
that “nonsmoothness” of a total function will result in a gap (discontinuity) in
the marginal or derivative function. This is in sharp contrast to the everywhere-
smooth total function in Fig. 7.15 which gives rise to a continuous marginal
function. For this reason, the smoothness of a primitive function can be linked to
the continuity of its derivative function. In particular, instead of saying that a
certain function is smooth (and differentiable) everywhere, we may alternatively
characterize it as a function with a continuous derivative function, and refer to it
as a continuously differentiable function.

Product Rule

The derivative of the product of two (differentiable) functions is equal to the first
function times the derivative of the second function plus the second function
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times the derivative of the first function:

d d d
(74)  Z[7()g(x)] = f(x) -a(x) + 8(x) -/ (x)

=f(x)g'(x) + g(x)f(x)
Example 5 Find the derivative of y = (2x + 3)(3x2). Let f(x)=2x + 3 and
g(x) = 3x2. Then it follows that f’(x) = 2 and g'(x) = 6x, and according to (7.4)
the desired derivative is
2 [(2x + 3)(3x)] = (2x + I)(6x) + (3)(2) = 18x + 18

This result can be checked by first multiplying out f(x)g(x) and then taking the
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derivative of the product polynomial. The product polynomial is in this case
f(x)g(x) = (2x + 3)(3x?) = 6x3 + 9x2, and direct differentiation does yield the
same derivative, 18x2 + 18x.

The important point to remember is that the derivative of a product of two
functions is not the simple product of the two separate derivatives. Since this
differs from what intuitive generalization leads one to expect, let us produce a
proof for (7.4). According to (6.13), the value of the derivative of f(x)g(x) when
x = N should be

d _ f(x)g(x) — f(N)g(N)
15)  Zl@ex) = tim [
But, by adding and subtracting f(x)g(N) in the numerator (thereby leaving the
original magnitude unchanged), we can transform the quotient on the right of
(7.5) as follows:

f(x)g(x) = f(x)g(N) + f(x)g(N) — f(N)g(N)
x—N

=f(x)g(x))c :i{(N) + g(N)f(x))c :J;\SN)

Substituting this for the quotient on the right of (7.5) and taking its limit, we then
get

05 £UeN| = tim () tim £

x—-N

+ lim g(N) hm ________f(xi :j;éN)

x—>N

The four limit expressions in (7.5") are easily evaluated. The first one is f(N), and
the third is g(N) (limit of a constant). The remaining two are, according to (6.13),
respectively, g’'(N) and f'(N). Thus (7.5’) reduces to

(157 U8 = AN)g(N) +g(N)f(N)

And, since N represents any value of x, (7.5”) remains valid if we replace every N
symbol by x. This proves the rule.
As an extension of the rule to the case of three functions, we have

(16) 2 [7()8()R()] = £(x)8(x)h(x) + 1(x) (x)h(x)
+()g () (x)

In words, the derivative of the product of three functions is equal to the product
of the second and third functions times the derivative of the first, plus the prod-
uct of the first and third functions times the derivative of the second, plus the
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product of the first and second functions times the derivative of the third. This
result can be derived by the repeated application of (7.4). First treat the product
g(x)h(x) as a single function, say, ¢(x), so that the original product of three
functions will become a product of two functions, f(x)¢(x). To this, (7.4) is
applicable. After the derivative of f(x)¢(x) is obtained, we may reapply (7.4) to
the product g(x)h(x) = ¢(x) to get ¢’(x). Then (7.6) will follow. The details are
left to you as an exercise.

The validity of a rule is one thing; its serviceability is something else. Why do
we need the product rule when we can resort to the alternative procedure of
multiplying out the two functions f(x) and g(x) and then taking the derivative of
the product directly? One answer to that question is that the alternative procedure
is applicable only to specific (numerical or parametric) functions, whereas the
product rule is applicable even when the functions are given in the general form.
Let us illustrate with an economic example.

Finding Marginal-Revenue Function from Average-Revenue Function

If we are given an average-revenue (AR) function in specific form,

‘AR =15- Q)
the marginal-revenue (MR) function can be found by first multiplying AR by Q
to get the total-revenue (R) function:

R=AR- Q—(lS—Q)Q—&Q)

and then dlﬂerentlatmg R:

i — d — —_— -
\LMR = E,,— 15 20 /

But if the AR function is given in the general form AR = f(Q), then the
total-revenue function will also be in a general form:

R=AR-0=/(0)-Q
and therefore the “multiply out” approach will be to no avail. However, because
R is a product of two functions of Q, namely, f(Q) and Q itself, the product rule

may be put to work. Thus we can differentiate R to get the MR function as
follows:

(1) MR= 25 =£(0)1+0-1(Q) = £(0) + 0/ (0)

However, can such a general result tell us anything significant about the MR?
Indeed it can. Recalling that f(Q) denotes the AR function, let us rearrange (7.7)
and write

(7.7) MR — AR = MR - f(Q) = 9f'(Q)
This glves us an important relatlonshlp between MR and AR: namely, they will
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It remains to examine the expression Qf'(Q). Its first component Q denotes
output and is always nonnegative. The other component, f(Q), represents the

slope of the AR curve plotted against Q. Since “average revenue” and “price™ are

but different names for the same thing;:

=_ PQ
AR= - = u

the AR curve can also be regarded as a curve relating price P to output Q:
P = f(Q). Viewed in this light, the AR curve is simply the inverse of the demand
curve for the product of the firm, i.e., the demand curve plotted after the P and 0
axes are reversed. Under pure competition, the AR curve is a horizontal straight
line, so that /(@) = 0 and, from (7.7’), MR — AR = 0 for all possible values of
Q Thus the MR curve and the AR curve must coincide. Under imperfect
competmon on the other hand, the AR curve is normally downward-sloping, as
in Fig. 7.2, so that f/(Q) <0 and, from (7.7"), MR — AR < 0 for all positive
levels of output. In this case, the MR curve must lie below the AR curve.

The conclusion just stated is qualitative in nature; it concerns only the relative
positions of the two curves. But (7.7’) also furnishes the guantitative information
that the MR curve will fall short of the AR curve at any output level O by
precisely the amount Qf(Q). Let us look at Fig. 7.2 again and consider the
particular output level N. For that output, the expression Qf'(Q) specifically
becomes Nf'(N); if we can find the magnitude of Nf'(N) in the diagram, we shall
know how far below the average-revenue point G the corresponding marginal-
revenue point must lie. - T

The magnitude of N is already specified. And f'(N) is simply the slope of the
AR curve at point G (where Q = N), that is, the slope of the tangent line JM
measured by the ratio of two distances OJ /OM. However, we see that OJ /OM =

AR=P={(Q)

Figure 7.2
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HJ /HG, besides, distance HG is precisely the amount of output under considera-
tion, N. Thus the distance Nf’( N), by which the MR curve must lie below the AR
curve at output N, is

(N = gL _
Nf(N) = HG3= = HJ

Accordingly, if we mark a vertical distance KG = HJ directly below point G, then
point K must be a point on the MR curve. (A simple way of accurately plotting
KG is to draw a straight line passing through point H and parallel to JG; point K
is where that line intersects the vertical line NG.)

The same procedure can be used to locate other points on the MR curve. All
we must do, for any chosen point G’ on the curve, is first to draw a tangent to the
AR curve at G’ that will meet the vertical axis at some point J'. Then draw a
horizontal line from G’ to the vertical axis, and label the intersection with the axis
as H'. If we mark a vertical distance K'G’ = H'J’ directly below point G’, then
the point K’ will be a point on the MR curve. This is the graphical way of
deriving an MR curve from a given AR curve. Strictly speaking, the accurate
drawing of a tangent line requires a knowledge of the value of the derivative at
the relevant output, that is, f(N); hence the graphical method just outlined
cannot quite exist by itself. An important exception is the case of a linear AR
curve, where the tangent to any point on the curve is simply the given line itself,
so that there is in effect no need to draw any tangent at all. Then the above
graphical method will apply in a straightforward way.

Quotient Rule

The derivative of the quotient of two functions, f(x)/g(x), is

d f(x) _ f(x)g(x) - f(x)g'(x)
dx g(x) g*(x)

In the numerator of the right-hand expression, we find two product terms, each
involving the derivative of only one of the two original functions. Note that f'(x)
appears in the positive term, and g’(x) in the negative term. The denominator
consists of the square of the function g(x); that is, g%(x) = [g(x)]%.

Example 6 i(2x —13) _2x+1) - (2x2— ) _ 5 2
dx )x + (x + 1) (x + 1)

2 - _ 2

Examp[e 7 i( 25X ) — S(X + 1) Szx(z-x) - 5(1 X 2

d
d

=

2 ~(ax2
Example 8 _(ax + b) _ 2ax(cx) — (ax? + b)(c)

cx (cx)z
c(ax? — b) _ax’-b

(cx)2 cx?
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This rule can be proved as follows. For any value of x = N, we have

(7.8) Ed’;%x:f Jﬂf(x)/g(xi—_fzsz)/g(N)

The quotient expression following the limit sign can be rewritten in the form
f(x)g(N) —f(N)g(x) 1
g(x)g(N) x=N

By adding and subtracting f(N)g(N ) in the numerator and rearranging, we can
further transform the expression to

[f(X)g(N)-f(N)g(N)+f(N)~g(N)—f(N)g(x)]
g(x)g(N) x—N
_ 1 f(x) - f(N) _ g(x) — g(N)
- g(x)g(N)[ (N)===w fIN)==—N ]
Substituting this result into (7.8) and taking the limit, we then have
4]y e [ (V)
& §(5) |, i gty Lm s im L
- lim (M) 1in;v—————g(x))c:%N)]
= 2(N)[g(N)f(N) f(N)g(N)] [by (6.13)]

which can be generalized by replacing the symbol N with x, because N represents
any value of x. This proves the quotient rule.

Relationship Between Marginal-Cost and Average-Cost Functions

As an economic application of the quotlent rule let us consider the rate of change
of average cost when output varies.

a quotient of two functlons of Q since A AC C (Q) / Q, “defined as long as Q > O

Therefore, the rate of change of AC with respect to @ can be found by
differentiating AC: __

19 LSO [c(0) - QQ—2 c()-1] _ é[c(g) ) C(QQ)]

From this it follows that, for 0> 0
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100 +

90 +
|

{ . 2
80 — MC = 3Q2 —24Q + 60

20— AC=Q2?— 12Q + 60

-
O e — o —
|
i
D

Since the derivative C’(Q) represents the marginal-cost (MC) function, and
C(Q)/Q represents the AC function, the economic meaning of (7.10) is: The
slope of the AC curve will be positive, zero, or negative if and only if the
marginal-cost curve lies above, intersects, or lies below the AC curve. This is
illustrated in Fig. 7.3, where the MC and AC functions plotted are based on the
specific total-cost function

' C = Q% - 120? +60Q/

To the left of Q = 6, AC is declining, and thus MC lies below it; to the right, the
opposite is true. At Q = 6, AC has a slope of zero, and MC and AC have the
same value.*

The qualitative conclusion in (7.10) is stated explicitly in terms of cost
funcuons However its vahdlty remams unaﬂected if we 1nterpret C(Q) as any
average and marginal functions. Thus this result gives us a general marginal-aver-
age relationship. In particular, we may point out, the fact that MR lies below £ AR
when AR is downward-sloping, as discussed in connection with Fig. 7.2,
nothlng but a spemal case of the general result in (7.10).

* Note that (7.10) does not state that, when AC is negatively sloped, MC must also be negatively
sloped: it merely says that AC must exceed MC in that circumstance. At Q = 5 in Fig. 7.3, for
instance, AC is declining but MC is rising, so that their slopes will have opposite signs.
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EXERCISE 7.2

1 Given the total-cost function C = Q* — 502 + 14Q + 75, write out a variable-cost
(VC) function. Find the derivative of the VC function, and interpret the economic
meaning of that derivative.

2 Given the average-cost function AC = 0% - 4Q + 214, find the MC function. Is the
given function more appropriate as a long-run or a short-run function? Why?

3 Differentiate the following by using the product rule:
(a) 9x?—2)3x + 1) (d) (ax — b)(ex?)
(b) Bx + 11)(6x2 —5x) (&) @ —3x)1 + x}x+2)
(¢) x*(4x + 6) (f) (x2+ 3Hx~!

/,*f (a) Given AR = 60 — 3Q, plot the average-revenue curve, and then find the MR curve
by the method used in Fig. 7.2.

(b) Find the total-revenue function and the marginal-revenue function mathematically

. from the given AR function.

(¢) Does the graphically derived MR curve in (a) check with the mathematically
derived MR function in (b)?

(d) Comparing the AR and MR functions, what can you conclude about their relative
slopes?

5 Provide a mathematical proof for the general result that, given a linear aVerage curve,
the corresponding marginal curve must have the same vertical intercept but will be twice
as steep as the average curve.

76 Prove the result in (7.6) by first treating g(x)h(x) as a single function, g(x)4(x) = ¢(x),
and then applying the product rule (7.4).
7 Find the derivatives of:
(a) (x*+3)/x (c) 4x/(x +5)
(b) (x+ T)/x (d) (ax* + b)/(cx + d)
8 Given the function f(x) = ax + b, find the derivatives of:

(@ f(x) (b) xf(x) () 1/f(%) (d) f(x)/x

7.3 RULES OF DIFFERENTIATION INVOLVING FUNCTIONS OF
DIFFERENT VARIABLES

In the preceding section, we discussed the rules of differentiation of a sum,
difference, product, or quotient of two (or more) differentiable functions of the
same variable. Now we shall consider cases where there are two or more
differentiable functions, each of which has a distinct independent variable.

Chain Rule

If we have a function z = f(y), where y is in turn a function of another variable
x, say, y = g(x), then the derivative of z with respect to x is equal to the
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