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OPTIMIZATION: A SPECIAL VARIETY
OF EQUILIBRIUM ANALYSIS

When we first introduced the term equilibrium in Chap. 3, we made a broad
distinction between goal and nongoal equilibrium. In the latter type, exemplified
by our study of market and national-income models, the interplay of certain
opposing forces in the model—e.g., the forces of demand and supply in the
market models and the forces of leakages and injections in the income
models—dictates an equilibrium state, if any, in which these opposing forces are
just balanced against each other, thus obviating any further tendency to change.
The attainment of this type of equilibrium is the outcome of the impersonal
balancing of these forces and does not require the conscious effort on the part of
anyone to accomplish a specified goal. True, the consuming households behind
the forces of demand and the firms behind the forces of supply are each striving
for an optimal position under the given circumstances, but as far as the market
itself is concerned, no one is aiming at any particular equilibrium price or
equilibrium quantity (unless, of course, the government happens to be trying to
peg the price). Similarly, in national-income determination, the impersonal bal-
ancing of leakages and injections is what brings about an equilibrium state, and
no conscious effort at reaching any particular goal (such as an attempt to alter an
undesirable income level by means of monetary or fiscal policies) needs to be
involved at all.
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232 OPTIMIZATION PROBLEMS

In the present part of the book, however, our attention will be turned to the
study of goal equilibrium, in which the equilibrium state is defined as the optimum
position for a given economic unit (a household, a business firm, or even an entire
economy) and in which the said economic unit will be deliberately striving for
attainment of that equilibrium. As a result. in this context—but only in this
context—our earlier warning that equilibrium does not imply desirability will
become irrelevant and immaterial. In this part of the book, our primary focus will
be on the classical techniques for locating optimum positions—those using
differential calculus. More modern developments, known as mathematical pro-
gramming, will be discussed later.

9.1 OPTIMUM VALUES AND EXTREME VALUES

Economics is by and large a science of choice. When an economic project is to be
carried out, such as the production of a specified level of output, there are
normally a number of alternative ways of accomplishing it. One (or more) of
these alternatives will, however, be more desirable than others from the stand-
point of some criterion, and it is the essence of the optimization problem to
choose, on the basis of that specified criterion, the best alternative available.

The most common criterion of choice among alternatives in economics is the
goal of maximizing something (such as maximizing a firm’s profit, a consumer’s
utility, or the rate of growth of a firm or of a country’s economy) or of minimizing
something (such as minimizing the cost of producing a given output). Economi-
cally, we may categorize such maximization and minimization problems under the
general heading of optimization, meaning “ the quest for the best.” From a purely
mathematical point of view, however, the terms “maximum” and “minimum” do
not carry with them any connotation of optimality. Therefore, the collective term
for maximum and minimum, as mathematical concepts, is the more matter-of-fact
designation extremum, meaning an extreme value.

In formulating an optimization problem, the first order of business is to
delineate an objective function in which the dependent variable represents the
object of maximization or minimization and in which the set of independent
variables indicates the objects whose magnitudes the economic unit in question
can pick and choose, with a view to optimizing. We shall therefore refer to the
independent variables as choice variables.* The essence of the optimization
process is simply to find the set of values of the choice variables that will yield the
desired extremum of the objective function.

For example, a business firm may seek to maximize profit 7, that is, to
maximize the difference between total revenue R and total cost C. Since, within
the framework of a given state of technology and a given market demand for the
firm’s product, R and C are both functions of the output level Q, it follows that =

* They can also be called decision variables, or policy variables.



OPTIMIZATION: A SPECIAL VARIETY OF EQUILIBRIUM ANALYSIS 233

is also expressible as a function of Q:

7(Q) = R(Q) — C(Q)
This equation constitutes the relevant objective function, with 7 as the object of
maximization and Q as the (only) choice variable. The optimization problem is
then that of choosing the level of Q such that 7 will be a maximum. Note that the
optimal level of 7 is by definition its maximal level, but the optimal level of the
choice variable Q is itself not required to be either a maximum or a minimum.

To cast the problem into a more general mold for further discussion (though
still confining ourselves to objective functions of one variable only), let us
consider the general function

y=/f(x)
and attempt to develop a procedure for finding the level of x that will maximize
or minimize the value of y. It will be assumed in this discussion that the function f
is continuously differentiable.

9.2 RELATIVE MAXIMUM AND MINIMUM:
FIRST-DERIVATIVE TEST

Since the objective function y = f(x) is stated in the general form, there is no
restriction as to whether it is linear or nonlinear or whether it is monotonic or
contains both increasing and decreasing parts. From among the many possible
types of function compatible with the above objective-function form, we have
selected three specific cases to be depicted in Fig. 9.1. Simple as they may be, the
graphs in Fig. 9.1 should give us valuable insight into the problem of locating the
maximum or minimum value of the function y = f(x).

Relative versus Absolute Extremum

If the objective function is a constant function, as in Fig. 9.1a, all values of the
choice variable x will result in the same value of y, and the height of each point
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on the graph of the function (such as A4 or B or ') may be considered a maximum
or, for that matter, a minimum—or, indeed. neither. In this case, there is in effect
no significant choice to be made regarding the value of x for the maximization or
minimization of y.

In Fig. 9.1b. the function is monotonically increasing, and there is no finite
maximum if the set of nonnegative real numbers is taken to be its domain.
However, we may consider the end point D on the left (the y intercept) as
representing a minimum; in fact, it 1s in this case the absolute (or global)
minimum in the range of the function.

The points £ and F in Fig. 9.1c, on the other hand. are examples of a relative
(or local) extremum, in the sense that each of these points represents an
extremum in the immediate neighborhood of the point only. The fact that point F
is a relative minimum 1is, of course, no guarantee that it is also the global
minimum of the function, although this may happen to be the case. Similarly, a
relative maximum point such as £ may or may not be a global maximum. Note
also that a function can very well have several relative extrema, some of which
may be maxima while others are minima.

In most economic problems that we shall be dealing with, our primary, if not
exclusive, concern will be with extreme values other than end-point values, for
with most such problems the domain of the objective function is restricted to be
the set of nonnegative numbers, and thus an end point (on the left) will represent
the zero level of the choice variable, which is often of no practical interest.
Actually, the type of function most frequently encountered in economic analysis
is that shown in Fig. 9.1¢, or some variant thereof which contains ounly a single
bend in the curve. We shall therefore continue our discussion mainly with
reference to the search for relative extrema such as points £ and F. This will,
however, by no means foreclose the knowiedge of an absolute maximum if we
want it, because an absolute maximum must be either a relative maximum or one
of the end points of the function. Thus if we know all the relative maxima, it is
necessary only to select the largest of these and compare it with the end points in
order to determine the absolute maximum. The absolute minimum of a function
can be found analogously. Hereafter, the extreme values considered will be
relative or local ones, unless indicated otherwise.

First-Derivative Test

As a matter of terminology, from now on we shall refer to the derivative of a
function alternatively as its first derivative (short for firsi-order derivative). The
reason for this will become apparent shortly.

Given a function y = f(x), the first derivative f(x) plays a major role in our
search for its extreme values. This is due to the fact that, if a relative extremum of
the function occurs at x = x,, then either (1) we have f(x,) = 0, or (2) f'(x,)
does not exist. The second eventuality is illustrated in Fig. 9.2a, where both
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points 4 and B depict relative extreme values of y, and yet no derivative is
defined at either of these sharp points. Since in the present discussion we are
assuming that y = f(x) is continuous and possesses a continuous derivative,
however, we are in effect ruling out sharp points. For smooth functions, relative
extreme values can occur only where the first derivative has a zero value. This 1s
illustrated by points C and D in Fig. 9.2b, both of which represent extreme
values., and both of which are characterized by a zero slope—f'(x,}= 0 and
f'(x,) = 0. It is also easy to see that when the slope is nonzero we cannot possibly
have a relative minimum (the bottom of a valley) or a relative maximum (the peak
of a hill). For this reason, we can, in the context of smooth functions, take the
condition f(x) =0 as a necessary condition for a relative extremum (either
maximum or minimum).

We must add, however, that a zero slope, while necessary, is not sufficient 1o
establish a relative extremum. An example of the case where a zero slope is not
associated with an extremum will be presented shortly. By appending a certain
proviso to the zero-slope condition, however, we can obtain a decisive test for a
relative extremum. This may be stated as follows:

First-derivative test for relative extremum If the first derivative of a function
f(x)at x = x, is f'(x,) = 0, then the value of the function at x. f(x,), will be

a. A relative maximum if the derivative f'(x) changes its sign from positive to
negative from the immediate left of the point x,, to its immediate right.

b. A relative minimum if f’(x) changes its sign from negative to positive from the
immediate left of x,, to its immediate right.

¢. Neither a relative maximum nor a relative minimum if /’(x) has the same sign
on both the immediate left and right of point x,.

(a)

Figure 9.2
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Let us call the value x a critical value of x if f'(x,) = 0, and refer to f(x,) as
a stationary value of y (or of the function f). The point with coordinates x, and
f(x,) can, accordingly, be called a stationary point. (The rationale for the word
“stationary” should be self-evident—wherever the slope is zero, the point in
question is never situated on an upward or downward incline, but is rather at a
standstill position.) Then, graphically, the first possibility listed in this test will
establish the stationary point as the peak of a hill, such as point D in Fig. 9.2b,
whereas the second possibility will establish the stationary point as the bottom of
a valley, such as point C in the same diagram. Note, however, that in view of the
existence of a third possibility, yet to be discussed, we are unable to regard the
condition f'(x) = 0 as a sufficient condition for a relative extremum. But we now
see that, if the necessary condition f(x) = 0 is satisfied, then the change-of-
derivative-sign proviso can serve as a sufficient condition for a relative maximum
or minimum, depending on the direction of the sign change.

Let us now explain the third possibility. In Fig. 9.3a, the function f is shown
to attain a zero slope at point J (when x = j). Even though f’( j) is zero—which
makes f( /) a stationary value—the derivative does not change its sign from one
side of x = j to the other; therefore, according to the test above, point J gives
neither a maximum nor a minimum, as is duly confirmed by the graph of the
function. Rather, it exemplifies what is known as an inflection point.
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The characteristic feature of an inflection point is that, at that point, the
derivative (as against the primitive) function reaches an extreme value. Since this
extreme value can be either a maximum or a minimum, we have two types of
inflection points. In Fig. 9.3a’, where we have plotted the derivative f'(x), we see
that its value is zero when x = j (see point J') but is positive on both sides of
point J’; this makes J’ a minimum point of the derivative function f'(x).

The other type of inflection point is portrayed in Fig 9.3b, where the slope of
the function g(x) increases till the point k is reached and decreases thereafter.
Consequently, the graph of the derivative function g'(x) will assume the shape
shown in diagram b’, where point K’ gives a maximum value of the derivative
function g'(x).*

To sum up: A relative extremum must be a stationary value, but a stationary
value may be associated with either a relative extremum or an inflection point. To
find the relative maximum or minimum of a given function, therefore, the
procedure should be first to find the stationary values of the function where
f'(x) =0 and then to apply the first-derivative test to determine whether each of
the stationary values is a relative maximum, a relative minimum, or neither.

Example 1 Find the relative extrema of the function
y=f(x)=x—12x* + 36x + 8

First, we find the derivative function to be
f(x)=3x*—24x + 36

To get the critical values, i.e., the values of x satisfying the condition f'(x) = 0,
we set the quadratic derivative function equal to zero and get the quadratic
equation

3x2 - 24x +36 =0

By factoring the polynomial or by applying the quadratic formula, we then obtain
the following pair of roots (solutions):

%, =2 [at which we have f'(2) = 0 and £(2) = 40]
%, =6 [at which we have f’(6) = 0 and f(6) = 8]

Since f'(2) = f'(6) = 0, these two values of x are the critical values we desire.

It is easy to verify that f’(x) > 0 for x < 2, and f'(x) < 0 for x > 2, in the
immediate neighborhood of x = 2; thus, the corresponding value of the function
f(2) = 40 is established as a relative maximum. Similarly, since f'(x) <0 for
x < 6, and f'(x) > 0 for x > 6, in the immediate neighborhood of x = 6, the
value of the function f(6) = 8 must be a relaive minimum.

* Note that a zero derivative value, while a necessary condition for a relative extremum, is not
required for an inflection point; for the derivative g'( x) has a positive value at x = &, and yet point K
is an inflection point.
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Figure 9.4

The graph of the function of this example is shown in Fig. 9.4. Such a graph
may be used to verify the location of extreme values obtained through use of the
first-derivative test. But, in reality, in most cases “helpfulness” flows in the
opposite direction—the mathematically derived extreme values will help in plot-
ting the graph. The accurate plotting of a graph ideally requires knowledge of the
value of the function at every point in the domain; but as a matter of actual
practice, only a few points in the domain are selected for purposes of plotting,
and the rest of the points typically are filled in by interpolation. The pitfall of this
practice is that, unless we hit upon the stationary point(s) by coincidence, we shall
miss the exact location of the turning point(s) in the curve. Now, with the
first-derivative test at our disposal, it becomes possible to determine these turning
points precisely.

Example 2 Find the relative extremum of the average-cost function

AC=7(Q)= 0"~ 50 +8

The derivative here is f'(Q) = 2Q — 5, a linear function. Setting f'(Q) equal to
zero, we get the linear equation 2Q — 5 = 0, which has the single root 0 = 2.5.
This is the only critical value in this case. To apply the first-derivative test, let us
find the values of the derivative at, say, Q = 2.4 and Q = 2.6, respectively. Since
f(24)= —02 < 0 whereas f'(2.6)= 02> 0, we can conclude that the sta-
tionary value AC = f(2.5) = 1.75 represents a relative minimum. The graph of
the function of this example is actually a U-shaped curve, so that the relative
minimum already found will also be the absolute minimum. Our knowledge of the
exact location of this point should be of great help in plotting the AC curve.
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EXERCISE 9.2

1 Find the stationary values of the following (check whether relative maxima or minima or
inflection points), assuming the domain to be the set of all real numbers:

(a) y = —2x>+4x + 9 (¢) y=x"+3

(b) v =5x"+ x (d) y =3x" - 6x +2

2 Find the stationary values of the following (check whether relative maxima or minima or
inflection points), assuming the domain to be the interval [0, o0):

(@) y=x" = 3x+5

() y=1x'—x"+x+ 10

() y=—x"+45x"—6x+6

3 Show that the function y = x + 1/x (with x # 0) has two relative extrema, one a
maximum and the other a minimum. Is the “minimum” larger or smaller than the
“maximum”™? How is this paradoxical result possible?

4 Let T = ¢(x) be a roral function (e.g., total product or total cost):

(a) Write out the expressions for the margina/ function M and the average function A.

(b) Show that, when A rcaches a relative extremum, M and A must have the same
value.

(¢) What general principle does this suggest for the drawing of a marginal curve and an
average curve in the same diagram?

(d) What can you conclude about the elasticity of the total function T at the point
where 4 rcaches an extreme value?

9.3 SECOND AND HIGHER DERIVATIVES -

Hitherto we have considered only the first derivative f'(x) of a functiony = f(x )
now let us introduce the concept of second derivative (short for second-order
derivative), and derivatives of even higher orders. These will enable us to develop
alternative criteria for locating the relative extrema of a function.

Derivative of a Derivative

Since the first derivative f'(x) 1s itself a function of x, it, too, should be
differentiable with respect to x, provided that i1t is continuous and smooth. The
result of this differentiation. known as the second derivative of the function f, 1s
denoted by

f7(x) where the double prime indicates that f(x) has been differentiated
with respect to x twice. and where the expression ( x) following the
double prime suggests that the second derivative is again a func-
tion of x
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or

d*y . . .
) where the notation stems from the consideration that the second

dx* L . d [ dy 5.
derivative means, in fact, — | — ); hence the ¢~ in the numerator

dx \ dx
and dx? in the denominator of this symbol

If the second derivative f'(x) exists for all x values in the domain, the function
f(x) is said to be wwice differentiable; if, in addition, f”(x) is continuous, the
function f(x) is said to be twice continuously differentiable.*

As a function of x the second derivative can be differentiated with respect to
x again to produce a third derivative, which in turn can be the source of a fourth
derivative, and so on ad infinitum, as long as the differentiability condition is met.
These higher-order derivatives are symbolized along the same line as the second
derivative:

£, FO). . (%) [with superscripts enclosed in ( )]
d3y d4y d”}’

or —_— ...,
dax’’ dx* dx"

n n

The last of these can also be written as il where the
X

o part serves as an
operator symbol instructing us to take the nth derivative of (some function) with
respect to x.

Almost all the specific functions we shall be working with possess continuous
derivatives up to any order we desire; i.e., they are continuously differentiable any
number of times. Whenever a general function is used, such as f(x), we always

assume that it has derivatives up to any order we need.
Example 1 Find the first through the fifth derivatives of the function
y=f(x)=4x* = x*+ 17x* + 3x — 1
The desired derivatives are as follows:
f(x)=16x" — 3x% + 34x + 3
f7(x) = 48x* — 6x + 34

f(x) = 96x — 6
[P(x) =96
FO(x) = 0
* The following notations are often used to denote continuity and differentiability of a function:
fec or fec: fis a continuous function
fec” or fec: /1s continuously differentiable
fec: /1s twice continuously differentiable

The symbol €' denotes the set of all functions that possess nth-order derivatives which are
continuous in the domain.
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In this particular (polynomial-function) example, each successive derivative
emerges as a simpler expression than the one before. until we reach a fifth
derivative, which is identically zero. This is not generally true, however, of all
types of function, as the next example will show. It should be stressed here that
the statement “ the fifth derivative is zero” is not the same as the statement * the
fifth derivative does not exist,” which describes an altogether different situation.
Note, also, that f®)(x) = 0 (zero at all values of x) is not the same as f©'(x,) = 0
(zero at x, only). g

Example 2 Find the first four derivatives of the rational function

y=glx)=7y—~ (*-1

These derivatives can be found either by use of the quotient rule, or. after
rewriting the function as y = x(1 + x)~ ', by the product rule:

g'(x)=(1+x)

g/ (x)= —2(1+x)°

g7 (x) = 6(1 +x)74
(x)=—24(1 + x) "’

-2

(x+-1)

g9 (x

In this case, repeated derivation evidently does not tend to simplify the subse-
quent derivative expressions.

Note that, like the primitive function g(x), all the successive derivatives
obtained are themselves functions of x. Given specific values of x, these derivative
functions will then take specific values. When x = 2, for instance, the second
derivative in Example 2 can be evaluated as

)= ~20) =
and similarly for other values of x. It is of the utmost importance to realize that to
evaluate this second derivative g”(x) at x = 2, as we did, we must first obtain
g"(x) from g'(x) and then substitute x = 2 into the equation for g”(x). It is
incorrect to substitute x = 2 into g(x) or g'(x) prior to the differentiation process
leading to g”(x).

Interpretation of the Second Derivative

The derivative function f'(x) measures the rate of change of the function f. By
the same token, the second-derivative function f” is the measure of the rate of
change of the first derivative f’; in other words, the second derivative measures
the rate of change of the rate of change of the original function f. To put it
differently, with a given infinitesimal increase in the independent variable x from
a point x = xg,

f(x;)>0
f'(xq) <0

} means that the value of the function tends to { increase

decrease
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whereas, with regard to the second derivative,

f7(x4) >0
f(xy) <0

Thus a positive first derivative coupled with a positive second derivative at
x = x, implies that the slope of the curve at that point is positive and
increasing— the value cof the function is increasing at an increasing rate. Likewise.
a positive first derivative with a negative second derivative indicates that the slope
of the curve is positive but decreasing— the value of the function is increasing at a
decreasing rate. The case of a negative first derivative can be interpreted analo-
gously, but a warning should accompany this case: When f’(x,) < 0 and f"(x,)
> 0, the slope of the curve is negative and increasing, but this does not mean that
the slope is changing, say, from (—10) to (—11); on the contrary, the change
should be from (—11), a smaller number, to (- 10), a larger number. In other
words, the negative slope must tend to be less steep as x increases. Lastly, when
f'(x,) <0 and f"(x,) < 0, the slope of the curve must be negative and decreas-
ing. This refers to a negative slope that tends to become steeper as x increases.

Since we have been talking about slopes, it may be useful to continue the
discussion with a graphical illustration. In Fig. 9.5 we have marked out six points
(A, B, C, D, E, and F) on the two parabolas shown; each of these points
illustrates a different combination of first- and second-derivative signs, as follows:

} means that the slope of the curve tends to { inerease

decrease

If at the derivative signs are we can illustrate it by
X=X (x>0 f(x) <0 point A4
X = X, f(x5)=0 f(x;) <0 point B
X= vy f(x3)<0 fx) <0 point C
X=X, g(xy) <0 g (x)> 0 point D
X = X; g{xs)=10 g (x5)> 0 point E
X = X¢ g'(xe)> 0 g (xg) > 0 point F

From this, we see that a negative second derivative (the first three cases) is
consistently reflected in an inverse U-shaped curve, or a portion thereof, because
the curve in question is required to have a smaller and smaller slope as x
increases. In contrast, a positive second derivative (the last three cases) con-
sistently points to a U-shaped curve, or a portion thereof, since the curve in
question must display a larger and larger slope as x increases. Viewing the two
curves in Fig. 9.5 from the standpoint of the horizontal axis, we find the one in
diagram a to be concave throughout, whereas the one in diagram b is convex
throughout. Since concavity and convexity are descriptions of how the curve
“bends,” we may now expect the second derivative of a function to inform us
about the curvature of its graph, just as the first derivative tells us about its slope.

Although the words “concave” and “convex” adequately convey the differing
curvature of the two curves in Fig. 9.5, writers today would more specifically label
them as strictly concave and strictly convex, respectively. In line with this terminol-
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(a) (b)

Figure 9.5

ogy, a function whose graph is strictly concave (strictly convex) is called a strictly
concave (strictly convex) function. The precise geometric characterization of a
strictly concave function is as follows. If we pick any pair of points M and N on
its curve and join them by a straight line, the line segment MN must lie entirely
below the curve, except at points M and N. The characterization of a strictly
convex function can be obtained by substituting the word “above” for the word
“below” in the last statement. Try this out in Fig. 9.5. If the characterizing
condition is relaxed somewhat, so that the line segment MN is allowed to lie either
below the curve, or along (coinciding with) the curve, then we will be describing
instead a concave function, without the adverb “strictly.” Similarly, if the line
segment MN either lies above, or lies along the curve, then the function is convex,
again without the adverb “strictly.” Note that, since the line segment MN may
coincide with a (nonstrictly) concave or convex curve, the latter may very well
contain a linear segment. In contrast, a strictly concave or convex curve can never
contain a linear segment anywhere. It follows that while a strictly concave
(convex) function is automatically a concave (convex) function, the converse is
not true.*

From our earlier discussion of the second derivative, we may now infer that if
the second derivative f”(x) is negative for all x, then the primitive function f(x)
must be a strictly concave function. Similarly, f(x) must be strictly convex, if
f”(x) 1s positive for all x. Despite this, it is nor valid to reverse the above
inference and say that, if f(x) is strictly concave (strictly convex), then f"”(x)
must be negative (positive) for all x. This is because, in certain exceptional cases,
the second derivative may have a zero value at a stationary point on such a curve.
An example of this can be found in the function y = f(x) = x*, which plots as a
strictly convex curve, but whose derivatives

f(x)=4x> f"(x)=12x*

* We shall discuss these concepts further in Sec. 11.5 below.
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indicate that, at the stationary point where x = 0, the value of the second
derivative is f(0) = 0. Note, however, that at any other point, with x # 0, the
second derivative of this function does have the (expected) positive sign. Aside
from the possibility of a zero value at a stationary point, therefore, the second
derivative of a strictly concave or convex function may be expected in general to
adhere to a single algebraic sign.

For other types of function, the second derivative may take both positive and
negative values, depending on the value of x. In Fig. 9.3a and b, for instance,
both f(x) and g(x) undergo a sign change in the second derivative at their
respective inflection points J and K. According to Fig. 9.3a’, the slope of
f’(x)—that s, the value of f(x)—changes from negative to positive at x = j; the
exact opposite occurs with the slope of g'(x)—that is, the value of g’’(x)—on the
basis of Fig. 9.3". Translated into curvature terms, this means that the graph of
f(x) turns from concave to convex at point J, whereas the graph of g(x) has the
reverse change at point K. Consequently, instead of characterizing an inflection
point as a point where the first derivative reaches an extreme value, we may
alternatively characterize it as a point where the function undergoes a change in
curvature or a change in the sign of its second derivative.

An Application

The two curves in Fig. 9.5 exemphfy the graphs of quadratic functions, which
may be expressed generally in the form

y=ax*+bx+c (a+0)

From our discussion of the second derivative, we can now derive a convenient
way of determining whether a given quadratic function will have a strictly convex
{U-shaped) or a strictly concave (inverse U-shaped) graph.

Since the second derivative of the quadratic function cited is d?y/dx? = 2a,
this derivative will always have the same algebraic sign as the coefficient a.
Recalling that a positive second derivative implies a strictly convex curve, we can
infer that a positive coefficient a in the above quadratic function gives rise to a
U-shaped graph. In contrast, a negative coefficient a leads to a strictly concave
curve, shaped like an inverted U.

As intimated at the end of Sec. 9.2, the relative extremum of this function will
also prove to be its absolute extremum, because in a quadratic function there can
be found only a single valley or peak, evident in a U or inverted U, respectively.

EXERCISE 9.3

1 Find the second and third derivatives of the following functions:

(a) ax* + bx + ¢ (¢) -1% (x+ 1)
(x# 1

1+ x

4 _ —
(b) 6x Ix—-4 (d) T
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2 Which of the following quadratic functions are strictly convex?
(@) y=9x>—4x +2 (¢) u=9 — x>
(by w= —3x*+ 139 (d) v =8 — 3x + x*

3 Draw (a) a concave curve which is not strictly concave, and (b) a curve which qualifies
simultaneously as a concave curve and a convex curve.

4 Given the functiony = a — (a. b, c> 0; x = 0), determine the general shape of

c+ x
its graph by examining («) its first and second derivatives, (b) its vertical intercept, and

(¢) the limit of y as x tends to infinity. If this function is to be used as a consumption
function, how should the parameters be restricted in order to make it economically
sensible?

5 Draw the graph of a function f(x) such that f'(x) = 0, and the graph of a function g(x)
such that g’(3) = 0. Summarize in one sentence the essential difference between f(x) and
g(x) in terms of the concept of stationary point.

9.4 SECOND-DERIVATIVE TEST

Returning to the pair of extreme points B and E in Fig. 9.5 and remembering the
newly established relationship between the second derivative and the curvature of
a curve, we should be able to see the validity of the following criterion for a
relative extremum:

Second-derivative test for relative extremum If the first derivative of a function f
at x = x4 18 f'(xy) = 0, then the value of the function at x,, f(x,), will be

a. A relative maximum if the second-derivative value at x is f"”(x,) < 0.
b. A relative minimum if the second-derivative value at x, is f”(x,) > 0.

This test is in general more convenient to use than the first-derivative test,
because it does not require us to check the derivative sign to both the left and the
right of x,. But it has the drawback that no unequivocal conclusion can be drawn
in the event that f”(x,) = 0. For then the stationary value f(x,) can be either a
relative maximum, or a relative minimum, or even an inflectional value.* When
the situation of f”(x,) = 0 is encountered, we must either revert to the first-
derivative test, or resort to another test, to be developed in Sec. 9.6, that involves

* To see that an inflection point is possible when f”(x;) = 0, let us refer back to Fig. 9.34 and
9.34’. Point J in the upper diagram is an inflection point, with x = ; as its critical value. Since the
f'(x) curve in the lower diagram attains a minimum at x = j, the slope of f'(x) {i.e., /”(x)] must be
zero at the critical value x = ;. Thus point J illustrates an inflection point occurring when f"(x,) = 0.

To see that a relative extremum is also consistent with f”(x,) = 0, consider the function y = x*.
This function plots as a U-shaped curve and has a minimum, y = 0, attained at the critical value
x = 0. Since the second derivative of this function is f"(x) = 12x2, we again obtain a zero value for
this derivative at the critical value x = 0. Thus this function illustrates a relative extremum occurring
when f”(xy) = 0.
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the third or even higher derivatives. For most problems in economics, however.
the second-derivative test should prove to be adequate for determining a relative
maximum or minimum.

Example 1 Find the relative extremum of the function
y=/f(x)=4x*-x

The first and second derivatives are
f(x)=8x—-1 and f(x)=28

Setting f'(x) equal to zero and solving the resulting equation, we find the (only)
critical value to be X = {, which yields the (only) stationary value f(3) = — .
Because the second derivative is positive (in this case it is indeed positive for any
value of x), the extremum is established as a minimum. Indeed, since the given
function plots as a U-shaped curve, the relative minimum is also the absolute

minimum.

Example 2 Find the relative extrema of the function
y=g(x)=x—3x*+2

The first two derivatives of this function are
g(x)=3x>—6x and g'(x)=6x—6

Setting g'( x) equal to zero and solving the resulting quadratic equation, 3x* — 6x
= 0, we obtain the critical values X, = 0 and X, = 2, which in turn yield the two
stationary values:

g(0) =2 [a maximum because g”(0) = —6 < 0]
g(2)= -2 [a minimum because g”'(2) = 6 > 0]

Necessary versus Sufficient Conditions

As was the case with the first-derivative test, the zero-slope condition f'(x) = 0
plays the role of a necessary condition in the second-derivative test. Since this
condition is based on the first-order derivative, it is often referred to as the
first-order condition. Once we find the first-order condition satisfied at x = x,, the
negative (positive) sign of f"(x,) is sufficient to establish the stationary value in
question as a relative maximum (minimum). These sufficient conditions, which are
based on the second-order derivative, are often referred to as second-order
conditions.

It bears repeating that the first-order condition is necessary, but not sufficient,
for a relative maximum or minimum. (Remember inflection points?) In sharp
contrast, while the second-order condition that f”(x) be negative (positive) at the
critical value x,, is sufficient for a relative maximum (minimum), it is not necessary.
[Remember the relative extremum that occurs when f”(x,) = 0?] For this reason,
one should carefully guard against the following line of argument: “Since the



OPTIMIZATION: A SPECIAL VARIETY OF EQUILIBRIUM ANALYSIS 247

stationary value f(x,) is already known to be a minimum, we must have
f"”(x,) > 0.” The reasoning here is faulty because it incorrectly treats the positive
sign of f”(x,) as a necessary condition for f(x;) to be a minimum.

This is not to say that second-order derivatives can never be used in stating
necessary conditions for relative extrema. Indeed they can. But care must then be
taken to allow for the fact that a relative maximum (minimum) can occur not only
when f”(x,) is negative (positive), but also when f"'(x,) is zero. Consequently,
second-order necessary conditions must be couched in terms of weak inequalities:
[ maximum |

for a stationary value f{x,) to be a relative L ,
| minimum J

it is necessary that

ol = o

>
Conditions for Profit Maximization

We shall now present some economic examples of extreme-value problems, i.e.,
problems of optimization.

One of the first things that a student of economics learns is that, in order to
maximize profit, a firm must equate marginal cost and marginal revenue. Let us
show the mathematical derivation of this condition. To keep the analysis on a
general level. we shall work with the total-revenue function R = R(Q) and
total-cost function C = C(Q), both of which are functions of a single variable Q.
From these it follows that a profit function (the objective function) may also be
formulated in terms of Q (the choice variable):

(9.1) 7 =7(Q)=R(Q) - C(Q)

To find the profit-maximizing output level, we must satisfy the first-order
necessary condition for a maximum: d7/dQ = 0. Accordingly, let us differentiate
(9.1) with respect to @ and set the resulting derivative equal to zero. The result is
dm _
dQ

=0 iff  R(Q)= C(Q)

Thus the optimum output (equilibrium output) Q must satisfy the equation
R'(Q)= C'(Q), or MR = MC. This condition constitutes the first-order condi-
tion for profit maximization.

However, the first-order condition may lead to a minimum rather than a
maximum; thus we must check the second-order condition next. We can obtain
the second derivative by differentiating the first derivative in (9.2) with respect to
o:

d*m ;

S5 = (Q) = RY(Q) ~ C(Q)

dQ- ¢

<0 iff  RY(Q)<C"(Q)
For an output level Q such that R'(Q) = C’(Q). the satisfaction of the second-

(9.2)

|
3\
-
I
=
S
{
~
1

il
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order condition R”(Q) < C”(Q) is sufficient to establish it as a profit-maximizing
output. Economically, this would mean that, if the rate of change of MR is less
than the rate of change of MC at the output where MC = MR, then that output
will maximize profit.

These conditions are illustrated in Fig. 9.6. In diagram ¢ we have drawn a
total-revenue and a total-cost curve. which are seen to intersect twice, at output
levels of @, and Q,. In the open interval (Q,, Q,), total revenue R exceeds totai
cost C, and thus 7 is positive. But in the intervals [0, Q,) and (Q,, Qs]. where Q.
represents the upper limit of the firm’s productive capacity, 7 is negative. This
fact is reflected in diagram b, where the profit curve—obtained by plotting the
vertical distance between the R and C curves for each level of output—Ilies above
the horizontal axis only in the interval (Q,. Q,).

When we set do/dQ = 0, in line with the first-order condition, it is our
intention to locate the peak point K on the profit curve, at output Q,, where the
slope of the curve is zero. However, the relative-minimum point M (output Q)
will also offer itself as a candidate, because it, too, meets the zero-slope require-
ment. We shall later resort to the second-order condition to eliminate the
“wrong” kind of extremum.

The first-order condition dn/dQ = 0 is equivalent to the condition R(Q) =
C'(Q). In Fig. 9.64, the output level Q; satisfies this, because the R and C curves
do have the same slope at Q, (the tangent lines drawn to the two curves at H and
J are parallel to each other). The same is true for output Q,. Since the equality of
the slopes of R and C means the equality of MR and MC, outputs @, and Q,
must obviously be where the MR and MC curves intersect, as illustrated in Fig.
9.6¢.

How does the second-order condition enter into the picture? Let us first look
at Fig. 9.6b. At point K, the second derivative of the = function will (barring the
exceptional zero-value case) have a negative value, 7”(Q,) < 0, because the curve
is inverse U-shaped around K; this means that Q; will maximize profit. At point
M, on the other hand, we would expect that #''(Q,) > 0; thus Q, provides a
relative minimum for # instead. The second-order sufficient condition for a
maximum can, of course, be stated alternatively as R”(Q) < C”(Q), that is, that
the slope of the MR curve be less than the slope of the MC curve. From Fig. 9.6¢,
it is immediately apparent that output Q5 satisfies this condition, since the slope
of MR is negative while that of MC is positive at point L. But output Q, violates
this condition because both MC and MR have negative slopes, and that of MR is
numericelly smaller than that of MC at point N, which implies that R"(Q,) is
greater than C”(Q,) instead. In fact, therefore, output Q, also violates the
second-order necessary condition for a relative maximum, but satisfies the
second-order sufficient condition for a relative minimumn.

Example 3 Let the R(Q) and C(Q) functions be

R(Q) = 12000 — 20
C(Q) = Q° — 61.250% + 1528.50 + 2000
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Then the profit function is
7(Q) = —Q° + 59.250% — 328.5Q — 2000

where R. C. and 7 are all in dollar units and Q is in units of (say) tons per week.
This profit function has two critical values, Q = 3 and Q = 36.5, because

am _ 402 985 = _/3
a0 30+ 118.5Q — 3285 =10 when Q {365
But since the second derivative is
’ >0 h = 3
9T _ _ep+ngs | when Q
dQ’ | <0 when Q0 = 36.5

the profit-maximizing output is Q = 36.5 (tons per week). (The other output
minimizes profit.) By substituting Q into the profit function, we can find the
maximized profit to be 7 = 7(36.5) = 16,318.44 (dollars per week).

As an alternative approach to the above, we can first find the MR and MC
functions and then equate the two, i.e.. find their intersection. Since

R(Q) = 1200 — 40
C'(Q) = 302 — 122.50 + 1528.5

equating the two functions will result in a quadratic equation identical with
dm/dQ = 0 which has yielded the two critical values of Q cited above.

Coeflicients of a Cubic Total-Cost Function

In Example 3 above, a cubic function is used to represent the total-cost function.
The traditional total-cost curve C = C(Q), as illustrated in Fig. 9.64, is supposed
to contain two wiggles that form a concave segment (decreasing marginal cost)
and a subsequent convex segment (increasing marginal cost). Since the graph of a
cubic function always contains exactly two wiggles, as illustrated in Fig. 9.4, it
should suit that role well. However, Fig. 9.4 immediately alerts us to a problem:
the cubic function can possibly produce a downward-sloping segment in its
graph, whereas the total-cost function, to make economic sense, should be
upward-sloping everywhere (a larger output always entails a higher total cost). If
we wish to use a cubic total-cost function such as

(93) C=C(Q)=aQ* +bQ*+cQ+d \

therefore, it is essential to place appropriate restrictions on the parameters so as
to prevent the C curve from ever bending downward.

An equivalent way of stating this requirement is that the MC function should
be positive throughout, and this can be ensured only if the absolure minimum of
the MC function turns out to be positive. Differentiating (9.3) with respect to Q.
we obtain the MC function

(94)  MC=C(Q)=23a0% +2bQ + ¢
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which, because it is a quadratic, plots as a parabola as in Fig. 9.6¢. In order for
the MC curve to stay positive (above the horizontal axis) everywhere, it is
necessary that the parabola be U-shaped (otherwise, with an inverse U, the curve
1s bound to extend itself into the second quadrant). Hence the coefficient of the
Q? term in (9.4) has to be positive; i.e., we must impose the restriction ¢ > 0. This
restriction, however, is by no means sufficient, because the minimum value of a
U-shaped MC curve—call it MC,_ ., (a relative minimum which also happens to
be an absolute minimum)—may still occur below the horizontal axis. Thus we
must next find MC_,, and ascertain the parameter restrictions that would make it
positive.

According to our knowledge of relative extremum, the minimum of MC will
occur where

d
—_ = + =
) MC =6aQ +2b=0
The output level that satisfies this first-order condition is
~2b -b
* _ = 7
¢ 6a 3a

This minimizes (rather than maximizes) MC because the second derivative
d*(MC)/dQ? = 6a is assuredly positive in view of the restriction @ > 0. The
knowledge of O* now enables us to calculate MC_;,, but we may first infer the
sign of coefficient b from it. Inasmuch as negative output levels are ruled out, we
see that b can never be positive (given a > 0). Moreover, since the law of
diminishing returns is assumed to set in at a positive output level (that is, MC is
assumed to have an initial declining segment), Q* should be positive (rather than
zero). Consequently, we must impose the restriction b < 0.

It is a simple matter now to substitute the MC-minimizing output Q* into
(9.4) to find that

—b 2 . _ K2

MC,,, = 3a(§) + 2b3—: +co= %
Thus, to guarantee the positivity of MC_;,, we must impose the restriction*
b* < 3ac. This last restriction, we may add, in effect also implies the restriction
¢ > 0. (Why?)

* This restriction may also be obtained by the method of completing the square. The MC function
can be successively transformed as follows:

MC = 3aQ? + 2hQ + ¢

5 b? b*
—(3uQ +2bQ+3a)~3u+(
3\ 2
| Bag+ 22| b dac
3a 3u

Since the squared expression can possibly be zero, the positivity of MC will be ensured—on the
knowledge that ¢ > O—only if b* < 3ac.



252 OPTIMIZATION PROBLEMS

The above discussion has involved the three parameters a, b, and ¢. What
about the other parameter, d? The answer is that there is need for a restriction on
d also, but that has nothing to do with the problem of keeping the MC positive. If
we let Q = 0 in (9.3), we find that C(0) = d. The role of d is thus to determine
the vertical intercept of the C curve only, with no bearing on its slope. Since the
economic meaning of 4 is the fixed cost of a firm, the appropriate restriction (in
the short-run context) would be 4 > 0.

In sum. the coefficients of the total-cost function (9.3) should be restricted as
follows (assuming the short-run context):

(9.5) a.c,d>0 b<0 h* < 3ac
As you can readily verify, the C(Q) function in Example 3 does satisfy (9.5).

Upward-Sloping Marginal-Revenue Curve

The marginal-revenue curve in Fig. 9.6¢ is shown to be downward-sloping
throughout. This, of course. is how the MR curve is traditionally drawn for a firm
under imperfect competition. However, the possibility of the MR curve being
partially, or even wholly, upward-sloping can by no means be ruled out a priori.*

Given an average-revenue function AR = f(Q), the marginal-revenue func-
tion can be expressed by

MR = f(Q) + Qf'(Q)  [from (7.7)]

The slope of the MR curve can thus be ascertained from the derivative
d ’ ’ 1t ’ 77
@MR =f(Q) +/(Q)+ 0f"(Q) =2f(Q) + 0f"(Q)

As long as the AR curve is downward-sloping (as it would be under imperfect
competition), the 2 f’(Q) term is assuredly negative. But the Qf”"(Q) term can be
either negative, zero, or positive, depending on the sign of the second derivative of
the AR function, ie.. depending on whether the AR curve is strictly concave.
linear, or strictly convex. If the AR curve is strictly convex either in its entirety (as
illustrated in Fig. 7.2) or along a specific segment, the possibility will exist that the
(positive) Of ’(Q) term may dominate the (negative) 2 f'(Q) term, thereby causing
the MR curve to be wholly or partially upward-sloping.

Example 4 Let the average-revenue function be _
AR = f(Q) = 8000 — 23Q + 1.10% — 0.018Q" \

As can be verified (see Exercise 9.4-7), this function gives rise to a downward-
sloping AR curve, as is appropriate for a firm under imperfect competition. Since

MR = f(Q) + Qf'(Q) = 8000 — 46Q + 3.30% — 0.0720Q°

* This point is emphatically brought out in John P. Formby, Stephen Layson, and W. James Smith.
*“The Law of Demand, Positive Sloping Marginal Revenue, and Multiple Profit Equilibria,” Economic
Inquiry, April 1982, pp. 303-311.



OPTIMIZATION: A SPECIAL VARIETY OF EQUILIBRIUM ANALYSIS 253

it follows that the slope of MR is

d 2

0 MR = —46 + 6.6Q — 0.216Q

Because this is a quadratic function and since the coefficient of Q7 is negative,
dMR /dQ must plot as an inverse-U-shaped curve against Q. such as shown in
Fig. 9.5a. If a segment of this curve happens to lie above the horizontal axis,
therefore, the slope of MR will take positive values.

Setting d MR /dQ = 0, and applying the quadratic formula, we find the two
zeros of the quadratic function to be Q, = 10.76 and Q, = 19.79 (approximately).
This means that, for values of Q in the open interval (Q,, Q,), the dMR/dQ
curve does lie above the horizontal axis. Thus the marginal-revenue curve indeed
is positively sloped for output levels between Q, and Q.

The presence of a positively sloped segment on the MR curve has interesting
implications. With more bends in its configuration, such an MR curve may
produce more than one intersection with the MC curve satisfying the second-order
sufficient condition for profit maximization. While all such intersections con-
stitute local optima, however, only one of them is the global optimum that the
firm is seeking.

EXERCISE 9.4

1 Find the relative maxima and minima of y by the second-derivative test:
5 1 5
(@) y = —2x" + 8x + 25 (¢) y= g.x"—3x~+5x+3

3 2 o 2x l
(by y=x"+6x" +7 (d)}—l_zx (x#z)

2 Mr. Greenthumb wishes to mark out a rectangular flower bed along the side wall of his
house. The other three sides are to be marked by wire netting. of which he has only 32 ft
available. What are the length L and width W of the rectangle that would give him the
largest possible planting area? How do you make sure that your answer gives the largest,
not the smallest area?

3 A firm has the following total-cost and demand functions:
C=10'-70° + 111Q + 50
Q=100—-P

(a) Does the total-cost function satisfy the coefficient restrictions of (9.5)?
(b) Write out the total-revenue function R in terms of Q.

(¢) Formulate the total-profit function  in terms of Q.

(d) Find the profit-maximizing level of output Q.

(e) What is the maximum profit?

4 If coefficient b in (9.3) were to take a zero value, what would happen to the marginal-cost
and total-cost curves?
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5 A quadratic profit function #(Q) = hQ* + jQ + k is to be used to reflect the followin:
assumptions:

(a) If nothing is produced, the profit will be negative (because of fixed costs).

(b) The profit function is strictly concave.

{¢) The maximum profit occurs at a positive output level Q.
What parameter restrictions are called for?

6 A purely competitive firm has a single variable input L (labor), with the wage rate H
per period. Its fixed inputs cost the firm a total of F dollars per period. The price of the
product is P,,.

(a) Write the production function, revenue function, cost function, and profit function
of the firm.

(b) What is the first-order condition for profit maximization? Interpret the condition
economically.

(¢) What economic circumstances would ensure that profit is maximized rather than
minimized?
7 Use the following procedure to verify that the AR curve in Example 4 is negatively
sloped:

(a) Denote the slope of AR by S. Write an expression for S.

(b) Find the maximum value of S, S, ,,, by using the second-derivative test.

(¢) Then deduce from the value of S, ,, that the AR curve is negatively sloped.

9.5 DIGRESSION ON MACLAURIN AND TAYLOR SERIES

The time has now come for us to develop a test for relative extrema that can
apply even when the second derivative turns out to have a zero value at the
stationary point. Before we can do that, however, it will first be necessary to
discuss the so-called “expansion” of a function y = f(x) into what are known,
respectively, as a Maclaurin series (expansion around the point x = 0) and a
Taylor series (expansion around any point x = Xx,).

To expand a function y = f(x) around a point x, means, in the present
context, to transform that function into a polynomial form, in which the coefficients
of the various terms are expressed in terms of the derivative values f'(x,), f''(xq).
etc.—all evaluated at the point of expansion x,. In the Maclaurin series, these
will be evaluated at x = 0; thus we have f'(0), f”(0), etc., in the coefficients. The
result of expansion may be referred to as a power series because, being a
polynomial, it consists of a sum of power functions.

Maclaurin Series of a Polynomial Function

Let us consider first the expansion of a polynomial function of the nth degree,

(9.6) flx)=ay+ax+a,x’+a x> +a,x*+ - +ax"
Since this involves the transformation of one polynomial into another, it may

seem a sterile and purposeless exercise, but actually it will serve to shed much
light on the whole idea of expansion.
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