Examen Teoría de Juegos. Febrero 2016. Solución

1. No hay equilibrios en estrategias puras. El único equilibrio es en el que los dos jugadores randomizan con probabilidades $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.
To show that this NE is unique, all we need to do then is to show that there cannot be a NE in which one of the players play a strategy where the support consists of exactly two actions. Suppose this is the case; in particular, suppose we have a NE in which player 2 randomizes over S and P . Then, player 1 cannot be playing P with positive probability. Hence, player 1 must be randomizing over R and S (since we have already argued that there is no NE in which any player plays a pure strategy). But if player 1 is playing both R and S with positive probability, player 2 cannot be playing P with positive probability - i.e. we have a contradiction.
2. a) For every $e \in[0,1],(e, \ldots, e)$ is a Nash equilibrium.
b) Any symmetric equilibrium with $e<1$ is Pareto inefficient, because all the players would be better off if they simultaneously switched to $(1,1, \ldots, 1)$. On the other hand, the symmetric equilibrium $(1,1, \ldots, 1)$ is Pareto efficient.
c) El equilibrio simétrico $\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$.
3. The following Bayesian game models the situation.

Players: The two people.
States: The set of states is $\{$ strong, weak $\}$.
Actions: The set of actions of each player is $\{$ fight, yield $\}$.
Signals: Player 1 receives the same signal in each state, whereas player 2 receives different signals in the two states.
Beliefs: The single type of player 1 assigns α to the state strong and probability $1-\alpha$ to the state weak. Each type of player 2 assigns probability 1 to the single state consistent with her signal.
Payoffs: The players' Bernoulli payoffs are as follows:

'strong'	fight	yield
fight	$-1, \mathbf{1}^{*}$	1,0
yield	$0, \mathbf{1}^{*}$	0,0

'weak'	claim	not
claim	$1,-1$	$1, \mathbf{0}^{*}$
not	$0, \mathbf{1}^{*}$	0,0

The best responses of each type of player 2 are indicated by asterisks. Thus if $\alpha<\frac{1}{2}$; then player 1's best action is fight, whereas if $\alpha>\frac{1}{2}$ her best action is yield. Thus for $\alpha<\frac{1}{2}$ the game has a unique Nash equilibrium, in which player 1 chooses fight and player 2 chooses fight if she is strong and yield if she is weak. When $\alpha>\frac{1}{2}$ the game has a unique Nash equilibrium, in which player 1 chooses yield and player 2 chooses fight regardless of whether she is strong or weak.
4. a) Consider the following strategy profile ($s_{1} ; s_{2}$):

$$
\begin{aligned}
& s_{1}\left(h^{t}\right)= \begin{cases}B & \text { if } h^{t}=h^{0} \\
T & \text { if } h_{1}=(B, R) \\
M & \text { otherwise }\end{cases} \\
& s_{2}\left(h^{t}\right)= \begin{cases}R & \text { if } h^{t}=h^{0} \\
L & \text { if } h_{1}=(B, R) \\
C & \text { otherwise }\end{cases}
\end{aligned}
$$

It is easy to check that $\left(s_{1} ; s_{2}\right)$ is a SPE of the repeated game. In any subgame of the second period the players play a Nash equilibrium of the stage game. Player 2 does not have any incentive to deviate in the first period. For player 1 is concerned, if she follows the equilibrium strategy her payoff is 7 . By deviating she can get at most a payoff of 6 .
b) Repitiendo el razonamiento anterior se tiene que el jugador 1 no se va a desviar sii $4+3 \delta \geq 5+\delta$, lo que es equivalente a $\delta \geq \frac{1}{2}$.

